
V 6.1.0 – 20251201

TABLE OF CONTENTS

Introduction to ProBuilder___1

Chapter I: Fundamentals___2
Using ProBuilder..2

Indicator creation quick tutorial..2
Programming window keyboard shortcuts..5

Specificities of ProBuilder programming language..6
The Execution Model...7
Variables..7

Financial constants..8
Price and volume constants adapted to the timeframe of the chart..8
Daily price constants...9
Temporal constants...9
Constants derived from price...13
The Undefined constant..13

How to use pre-existing indicators?...14
Adding customizable variables..17

Chapter II: Math Functions and ProBuilder instructions________________19
Control Structures..19

Conditional IF instruction...19
One condition, one result (IF THEN ENDIF)...19
One condition, two results (IF THEN ELSE ENDIF)...19
Sequential IF conditions... 19
Multiple conditions (IF THEN ELSE ELSIF ENDIF)..20

Iterative FOR Loop..22
Ascending loop (FOR, TO, DO, NEXT)...22
Descending loop (FOR, DOWNTO, DO, NEXT)...23

Conditional WHILE Loop...24
BREAK...25

BREAK with WHILE.. 25
BREAK with FOR.. 26

CONTINUE..27
CONTINUE with WHILE...27
CONTINUE with FOR...27

ONCE..28

Mathematical Functions...29
Common unary and binary Functions...29
Common mathematical operators...29
Charting comparison functions..29
Summation functions...30
Statistical functions..30

Logical operators...30

ProBuilder instructions...31
RETURN..31
Comments...31
CustomClose...31
CALCULATEONLASTBARS...31
CALL..32
AS..32
COLOURED..33

Drawing instructions..35
Additional parameters..38

Multi-period instructions...41
List of available time frames..43

Arrays (Data tables)...44
PRINT..46

Chapter III: Practical aspects______________________________________48
Create a binary or ternary indicator: why and how ?...48

Chapter IV: Exercises__50
Candlestick patterns..50
Indicators...52

Glossary___54

Warning: ProRealTime does not provide investment advisory services. This document is not in any
case personal or financial advice nor a solicitation to buy or sell any financial instrument. The
example codes shown in this manual are for learning purposes only. You are free to determine all
criteria for your own trading. Past performance is not indicative of future results. Trading systems
may expose you to a risk of loss greater than your initial investment.

In t roduct ion to ProBui lder

Introduction to ProBuilder
ProBuilder is ProRealTime's programming language. It allows you to create personalised technical
indicators, trading strategies (ProBacktest) or screening programs (ProScreener). Two specific manuals exist
for ProBacktest and ProScreener due to some specific characteristics of each of these modules.

ProBuilder is a BASIC-type programming language, very easy to handle and exhaustive in terms of available
possibilities.
You will be able to create your own programs using the quotes from any instrument provided by
ProRealTime. Some basic available elements include:

Opening of each bar: Open
Closing of each bar: Close
Highest price of each bar: High
Lowest price of each bar: Low
Volume of each bar: Volume

Bars or candlesticks are the common charting representations of real-time quotes. Of course, ProRealTime
offers you the possibility of personalizing the style of the chart. You can use Renko, Kagi, Heikin-Ashi and
many other styles.

ProBuilder evaluates the data of each price bar starting from the oldest bar to the most recent one, and then
executes the formula developed in the language in order to determine the value of the indicators on the
current bar.
The indicators coded in ProBuilder can be displayed either in the price chart or in their own charts.

In this document, you will learn, step by step, how to use the available commands necessary to program in
this language thanks to a clear theoretical overview and concrete examples.

At the end of the manual, you will find a Glossary which will give you an overall view of all the ProBuilder
commands, pre-existing indicators and other functions completing what you would have learned after reading
the previous parts.

Users more confident in their programming skills can skip directly to chapter II or just refer to the Glossary to
quickly find the information they want.

For those who are less confident, we recommend watching our video tutorial entitled "Programming simple
and dynamic indicators" and reading the whole manual.

If you have any questions about ProBuilder, you can ask our ProRealTime community on the ProRealCode
forum, where you will also find online documentation with many examples.
Your dedicated ProRealTime account manager can also help you answer such questions. Feel free to ask.

We wish you success and hope you will enjoy the manual!

The ProRealTime team

V 6.1.0 – 20251201 www.prorealtime.com 1 / 62

https://www.prorealcode.com/prorealtime-documentation/
https://www.prorealcode.com/forums/
https://www.prorealcode.com/forums/
https://www.prorealtime.com/en/videos/create-your-indicators?from=Manuel_Probuilder_EN
https://www.prorealtime.com/en/videos/create-your-indicators?from=Manuel_Probuilder_EN

Chapter I : Fundamenta ls

Chapter I: Fundamentals

Using ProBuilder

Indicator creation quick tutorial
The indicator programming area is available from the "Indicators" button on each chart in your ProRealTime
platform or from the menu Display > Indicators/Backtest.

The indicators management window will be displayed. You will then be able to:
Display a pre-existing indicator
Create a personalised indicator, which can be used afterwards on any security

If you choose the second possibility, click on "Create" to access the programming window.
At that time, you will be able to choose between:

Programming the indicator directly in the text zone designed for writing code or

Using the help function by clicking on "Insert Function" (icon). This will open a new window in which

you can find all the functions available. This library is divided in 8 categories, to give you constant
assistance while programming.

V 6.1.0 – 20251201 www.prorealtime.com 2 / 62

Chapter I : Fundamenta ls

Let’s take for example the first ProBuilder key element: the "RETURN" function, available in the "ProBuilder

function list" (see the image below).

Select the word "RETURN" and click on "Add". The command will be added to the programming zone.

RETURN allows you to display the result

V 6.1.0 – 20251201 www.prorealtime.com 3 / 62

Chapter I : Fundamenta ls

Suppose we want to create an indicator displaying the Volume. If you have already inserted the function
"RETURN", then you just need to click one more time on "Insert Function". Next, click on "Constants" in the
"Categories" section, then in the right side of the window, in the section named "Functions", click on
"Volume". Finally, click on "Add". Don't forget to add a space in between each instruction as shown below.

Before clicking on the "Apply" button, specify at the top of the window the name of your indicator. Finally,
click on "Apply" and you will see the chart with your indicator.

V 6.1.0 – 20251201 www.prorealtime.com 4 / 62

Chapter I : Fundamenta ls

Programming window keyboard shortcuts
The programming window has a number of useful features that can be accessed by keyboard shortcuts:

Select all (Ctrl + A): Select all text in the programming window
Copy (Ctrl + C): Copy the selected text
Cut (Ctrl + X): Cut the selected text
Paste (Ctrl + V): Paste copied text
Undo (Ctrl + Z): Undo the last action in the programming window
Redo (Ctrl + Y): Redo the last action in the programming window
Find / Replace (Ctrl + F): Find a text in the programming window / replace a text in the programming

window
Comment / Uncomment (Ctrl + R): Comment the selected code / Uncomment the selected code

(commented code will be preceded by "//" and colored grey. It will not be taken into account when the code
is executed).

Auto-complete (Ctrl + Space): Allows you to display suggested instructions or keywords

For Mac users, the same keyboard shortcuts can be accessed with the "Command" key in place of the "Ctrl"
key.
Most of these features can also be accessed by right-clicking in the programming window.

V 6.1.0 – 20251201 www.prorealtime.com 5 / 62

Chapter I : Fundamenta ls

Specificities of ProBuilder programming language

Specificities
The ProBuilder language allows you to use many classic commands as well as sophisticated tools which are
specific to technical analysis. These commands will be used to program from simple to very complex
indicators.

The main ideas to know in the ProBuilder language are:
It is not necessary to declare variables
It is not necessary to type variables
There is no difference between capital letters and small letters
We use the same symbol "=" for mathematical equality and to attribute a value to a variable

What does this mean?
Declaring a variable X means indicating its existence. In ProBuilder, you can directly use X without

having to declare it. Let’s take an example:
With declaration: let X be a variable and assign the value 5 to X.
Without declaration: We attribute to X the value 5 (therefore, implicitly, X exists and the value 5 is attributed
to it)
In ProBuilder, you just need to write: X=5

Typing a variable means defining its nature. For example: is the variable an integer (e.g.: 3; 8; 21; 643;
…), a decimal number (e.g.: 1.76453534535…), a boolean (RIGHT=1, WRONG=0),…

In ProBuilder, you can write your command with capital letters or small letters. For example, the group
of commands IF / THEN / ELSE / ENDIF can be written iF / tHeN / ELse / endIf

Assigning a value to a variable means giving the variable a value. In order to understand this principle,
you must think of a variable as an empty box which you can fill with an expression (ex: a number). The
following diagram illustrates the Assignment Rule with the Volume value assigned to the variable X:

X Volume
As you can see, we must read from right to left: Volume is assigned to X.
If you want to write it under ProBuilder, you just need to replace the arrow with an equal sign:

X = Volume
The same = symbol is used:

For the assignment of a variable (like the previous example)
As the mathematical comparison operator (1+ 1= 2 is equivalent to 2 = 1 + 1).

V 6.1.0 – 20251201 www.prorealtime.com 6 / 62

Chapter I : Fundamenta ls

The Execution Model
Unlike traditional programming languages that run once and then stop, ProBuilder executes once per
candlestick, starting with the oldest candlestick.
When it reaches the candlestick that is currently being formed, the behaviour changes depending on the
ProBuilder engine in use (Indicator, ProBacktest, ProOrder AutoTrading, ProScreener):

Indicator: the code is re-evaluated on every tick.
ProBacktest and ProOrder: the code is evaluated at candlestick close.
ProScreener: the code is re-run from the very first candlestick as soon as the market has been fully

scanned. This keeps the ProScreener window permanently up-to-date.

Variables
In classic programming languages, a variable holds a single value. In ProBuilder, variables work differently:
they store a history of their values for every candlestick encountered. The history therefore grows as
the code moves forward through the historical candlesticks.
Every value in the history is instantly accessible using the [n] operator, which returns the value n
candlesticks ago relative to the current candlestick. You can also fetch the n-th value in the history with
[BarIndex+1-n]:

MyVariable[3] → value of MyVariable 3 candlesticks before the current one.
MyVariable[BarIndex-2] → value of MyVariable at the 3rd candlestick in the history.

Although ProBuilder variables look like lists from other languages, their behaviour is quite different:
You cannot modify the past: MyVariable[3] = 42 is invalid. The history can be read but never altered.
Only the value for the current candlestick can be changed: MyVariable = 42 is valid.
If a variable is not assigned on the current candlestick, it automatically keeps the value it had on the

previous candlestick – as if the following line were silently inserted at the top of the code for every variable:
MyVariable = MyVariable[1].

There are also array-type variables ($MyArray[MyIndex]) which will be covered in detail later in this manual.
Unlike classic ProBuilder variables, arrays are not historised. The operation $MyArray[MyIndex][3] is
invalid; it does not retrieve the value of $MyArray[MyIndex] from 3 candlesticks ago.

It is essential to have a solid grasp of the execution model and the concept of historised

variables in order to unlock the full power of ProBuilder!

V 6.1.0 – 20251201 www.prorealtime.com 7 / 62

Chapter I : Fundamenta ls

Financial constants

Before coding your personal indicators, you must examine the elements you need to write your code such as
the opening price, the closing price, etc.
These are the "fundamentals" of technical analysis and the main things to know for coding indicators.

You will then be able to combine them in order to draw out some information provided by financial markets.
We can group them together in 5 categories:

Price and volume constants adapted to the timeframe of the chart
These are the "classical" constants and also the ones used the most. They report by default the value of the
current bar (whatever the timeframe used).

Open: Opening price of the current bar.
High: Highest price of the current bar.
Low: Lowest price of the current bar.
Close: Closing price of the current bar.
Volume: The number of securities or contracts exchanged during the current bar.

DECREASING CANDLESTICK INCREASING CANDLESTICK

Example: Range of the current bar
a = High
b = Low
MyRange = a - b
RETURN MyRange // The “Range” constant also exists to simplify access to this value.

If you want to use the information of previous bars rather than the current bar, you just need to add between
square brackets the number of bars that you want to go back into the past.

Let’s take for example the closing price constant. Calling the price is done in the following way:
Value of the closing price of the current bar: Close
Value of the closing price of the bar preceding the current bar: Close[1]
Value of the closing price of the nth bar preceding the current one: Close[n]

This rule is valid for any constant or variable. For example, the opening price of the 2nd bar preceding the
current can be expressed as: Open[2].
The reported value will depend on the displayed timeframe of the chart.

V 6.1.0 – 20251201 www.prorealtime.com 8 / 62

Chapter I : Fundamenta ls

Daily price constants
Contrary to the constants adapted to the timeframe of the chart, the daily price constants refer to the value of
the day, regardless of the timeframe of the chart.

Another difference between Daily price constants and constants adapted to the timeframe of the chart is that
the daily price constants use parentheses and not square brackets to call the values of previous days.

DOpen(n): Opening price of the n-th day before the one of the current bar
DHigh(n): Highest price of the n-th day before the one of the current bar
DLow(n): Lowest price of the n-th day before the one of the current bar
DClose(n): Closing price of the n-th day before the one of the current bar

Note: if "n" is equal to 0, "n" refers to the current day. The maximum and minimum values are not yet
definitive for n=0, we will obtain results which can change during the day depending on the minimum and
maximum reached by the value.

The constants adapted to the timeframe of the chart use square brackets while the daily price

constants use parentheses.
 Close[3] The closing price 3 periods ago
 DClose(3) The closing price 3 days ago

Temporal constants
Time is often a neglected component of technical analysis. However, traders know very well the importance
of some time periods in the day or dates in the year. It is possible in your programs to take into account time
and date and improve the efficiency of your indicators. The Temporal constants are described hereafter:

Date: indicates the date of the close of each bar in the format YearMonthDay (YYYYMMDD)

Temporal constants are considered by ProBuilder as whole numbers. The Date constant, for example, must
be used as one number made up of 8 figures.
Let’s write down the program:
RETURN Date

Suppose today is July 4th, 2020. The program above will return the result 20200704.

The date can be read in the following way:
20200704 = 2020 years 07 months and 04 days.

Note that when writing a date in the format YYYYMMDD, MM must be between 01 and 12 and DD must be
between 01 and 31.

Time: indicates the time of closing of each bar in the format HHMMSS (HourMinuteSecond)
Example:
RETURN Time

V 6.1.0 – 20251201 www.prorealtime.com 9 / 62

Chapter I : Fundamenta ls

This indicator shows us the closing time of each bar in the format HHMMSS:

Time can be read as follows:
160000 = 16 hours, 00 minutes, and 00 seconds.
Note that when writing a time in the format HHMMSS, HH must be between 00 and 23, MM must be between
00 and 59 and SS must be also between 00 and 59.

It is also possible to use Time and Date in the same indicator to do analysis or display results at a precise
moment. In the following example, we want to limit our indicator to the date of October 1st 2025 at precisely
9am and 1 second:
a = (Date = 20251001)
b = (Time = 090001)
RETURN (a AND b)

The following constants work the same way:
Timestamp: UNIX date and time (number of seconds since January 1st, 1970) of the close of each bar.
Second: Second of the close of each bar (between 0 and 59).
Minute: Minute of the close of each bar (from 0 to 59): Only for intraday charts.
Hour: Hour of the close of each bar (from 0 to 23): Only for intraday charts.
Day: Day of the month of the closing price of each bar (from 1 to 28 or 29 or 30 or 31)
Month: Month of the closing price of each bar (from 1 to 12)
Year: Year of the closing price of each bar
DayOfWeek: Day of the Week of the close of each bar (0=Sunday, 1=Monday, 2=Tuesday,

3=Wednesday, 4=Thursday, 5=Friday, 6=Saturday)

V 6.1.0 – 20251201 www.prorealtime.com 10 / 62

https://en.wikipedia.org/wiki/Unix_time

Chapter I : Fundamenta ls

Derivative constants also exist for Open:
OpenTimestamp: UNIX date and time of the open of each bar.
OpenSecond: Second of the open of each bar (between 0 and 59).
OpenMinute: Minute of the open of each bar (between 0 and 59).
OpenHour: Hour of the open of each bar (between 0 and 23).
OpenDay: Day of the month of the open of each bar (between 1 and 28 or 29 or 30 or 31).
OpenMonth: Month of the open of each bar (between 1 and 12).
OpenYear: Year of the open of each bar.
OpenDayOfWeek: Day of the week at the open of each bar (0=Sunday, 1=Monday, 2=Tuesday,

3=Wednesday, 4=Thursday, 5=Friday, 6=Saturday).
OpenTime: HourMinuteSecond encoded as HHMMSS indicating the opening time of each bar.
OpenDate: Date (YYYYMMDD) of the open of each bar.

Example of the use of these constants:
RETURN (Hour > 17) AND (Day = 30)

CurrentHour: Current Hour (of the local market).
CurrentMinute: Current Minute (of the local market).
CurrentMonth: Current Month (of the local market).
CurrentSecond: Current Second (of the local market).
CurrentTime: Current HourMinuteSecond (of the local market).
CurrentYear: Current Year (of the local market).
CurrentDayOfWeek: Current Day of the week with the market time zone as a reference.

The following picture brings to light that difference (applied on the CurrentTime and Time constants). We can
highlight the fact that for "Current" constants, we must set aside the time axis and only take in consideration the
displayed value (the value of the current time is displayed over the whole history of the chart).

Time indicates the closing time of each bar.

 CurrentTime indicates the current market time.

V 6.1.0 – 20251201 www.prorealtime.com 11 / 62

https://en.wikipedia.org/wiki/Unix_time

Chapter I : Fundamenta ls

If you want to set up your indicators with counters (number of days passed, number of bars passed etc…),
you can use the Days, BarIndex and IntradayBarIndex constants.

Days: Counter of days since 1900
This constant is quite useful when you want to know the number of days that have passed. It is particularly
relevant when you work with an (x) tick or (x) volume view.
The following example shows the number of days passed since 1900.
RETURN Days
(Be careful not to confuse the constants "Day" and "Days").

BarIndex: Counter of bars since the beginning of the displayed historical data
The counter starts from left to right and counts each bar, including the current bar. The first bar loaded is
considered bar number 0. Most of the time, BarIndex is used with the IF instruction presented later in the
manual.

IntradayBarIndex: Counter of intraday bars
The counter displays the number of bars since the beginning of the day and then resets to zero at the
beginning of every new day. The first bar of the counter is considered bar number 0.
Let’s compare the two counter constants with two separate indicators:
RETURN BarIndex
and
RETURN IntradayBarIndex

We can clearly see the difference between them: IntradayBarIndex resets itself to zero at the beginning of
every new day.

V 6.1.0 – 20251201 www.prorealtime.com 12 / 62

Chapter I : Fundamenta ls

Constants derived from price
These constants allow you to get more complete information compared to Open, High, Low and Close, since they
combine those prices so as to emphasize some aspects of the financial market psychology shown on the current
bar.

Range: difference between High and Low.
Range = High – Low

TypicalPrice: average between High, Low and Close
TypicalPrice = (High + Low + Close) / 3

WeightedClose: weighted average of High, Low and Close
WeightedClose = (High + Low + 2 * Close) / 4

MedianPrice: average between High and Low
MedianPrice = (High + Low) / 2

TotalPrice: average between Open, High, Low and Close
TotalPrice = (Open + High + Low + Close) / 4

Range shows the volatility of the current bar, which is an estimation of how nervous investors are.
WeightedClose focuses on the importance of the closing price.
TypicalPrice and TotalPrice emphasize intraday financial market psychology since they take 3 or 4
predominant prices of the current bar into account.
MedianPrice is the median price of the candlestick, calculated by computing the average of the High and
Low.

Range in %:
pctRange = (Range / Range[1] - 1) * 100
RETURN pctRange

The Undefined constant

The keyword Undefined allows you to indicate to the software not to display the value of the indicator.
Undefined: undefined data (equivalent to an empty box)

You can find an example later in the manual.

V 6.1.0 – 20251201 www.prorealtime.com 13 / 62

Chapter I : Fundamenta ls

How to use pre-existing indicators?

Up until now, we have described the possibilities offered by ProBuilder concerning constants and how to call
values of bars of the past using these constants. Pre-existing indicators (the ones already programmed in
ProRealTime) function the same way and so do the indicators you will code.
ProBuilder indicators are made up of three elements whose syntax is:

NameOfFunction [calculated over n periods] (applied to which price or indicator)

When using the "Insert Function" button to look for a ProBuilder function and then enter it into your program,
default values are given for both the period and the price or indicator argument. Example for a moving
average of 20 periods:

Average[20](Close)
The values can be modified. For example, we can replace the 20 bars defined by default with any number of
bars (ex: Average[10], Average[15], Average[30], …, Average[n]). In the same way, we can replace "Close"
with "Open" or RSI (Relative strength index). This would give us for example:

Average[20](RSI[5](Close))
In this case the average is calculated on the last 20 candles of the RSI applied to the last 5 closing prices.
Here are some sample programs:
Program calculating the exponential moving average over 20 periods applied to the closing price:
RETURN ExponentialAverage[20](Close)

Program calculating the weighted moving average over 20 bars applied to the typical price
RETURN WeightedAverage[20](TypicalPrice)

Program calculating the Wilder average over 100 candlesticks applied to the Volume
RETURN WilderAverage[100](Volume)

Program calculating the MACD (histogram) applied to the closing price.
The MACD is built with the difference between the 12-period exponential moving average (EMA) minus the
26-period EMA. Then, we smooth it with an exponential moving average over 9 periods and applied to the
MACD line to get the Signal line. Finally, the MACD is the difference between the MACD line and the Signal
line.
// Calculation of the MACD line
LineMACD = ExponentialAverage[12](Close) - ExponentialAverage[26](Close)
// Calculation of the MACD Signal line
SignalMACD = ExponentialAverage[9](LineMACD)
// Calculation of the difference between the MACD line and its Signal
MACDHistogram = LineMACD - SignalMACD
RETURN MACDHistogram STYLE (HISTOGRAM)

V 6.1.0 – 20251201 www.prorealtime.com 14 / 62

Chapter I : Fundamenta ls

Calculation of an average with two parameters
You also have the possibility to use a second parameter with the Average function (which indicates the type
of average to use). We obtain the following formula :

Average [Nbr. of periods, Type of average]

The parameter Type of average designates, as its name indicates, the type of average that will be used.
There are 9 of them and they are indexed from 0 to 8:

0=Single 4=Triangular 8=Zero delay
1=Exponential 5=Least Squares
2=Weighted 6=Time series
3=Wilder 7=Hull

Calculation of Ichimoku lines
Since the Ichimoku indicator includes many lines, some of these lines have been introduced separately in the
ProBuilder language to allow you to get the most out of this indicator.

The lines as follows:
TenkanSen[TenkanPeriod,KijunPeriod,Senkou-SpanBPeriod]
KijunSen[TenkanPeriod,KijunPeriod,Senkou-SpanBPeriod]
SenkouSpanA[TenkanPeriod,KijunPeriod,Senkou-SpanBPeriod]
SenkouSpanB[TenkanPeriod,KijunPeriod,Senkou-SpanBPeriod]

With for each line the usual Ichimoku parameters:
TenkanPeriod: alert line, (high point + low point)/2 over the last n periods

KijunPeriod: signal line, (high point + low point)/2 over the last n periods

Senkou-SpanBPeriod: long-term average point projection, (high point + low point)/2 over the last n
periods

V 6.1.0 – 20251201 www.prorealtime.com 15 / 62

Chapter I : Fundamenta ls

Calculation of PRT Bands
PRT Bands is a visual indicator that simplifies the detection and monitoring of trends. It is exclusive to the
ProRealTime platform.

It can help you to:
detect a reversal of trends
identify and follow an upward trend
measure the intensity of the trend
find potential entry and exit points

Here are the different PRT Bands data available in the ProBuilder language:
PRTBANDSUP: returns the value of the top line of the indicator
PRTBANDSDOWN: returns the value of the bottom line of the indicator
PRTBANDSSHORTTERM: returns the value of the short-term (thick) line of the indicator
PRTBANDSMEDIUMTERM: returns the value of the medium-term (thin) line of the indicator

Learn more about the PRT Bands indicator

V 6.1.0 – 20251201 www.prorealtime.com 16 / 62

https://www.prorealtime.com/en/help-manual/prorealtime-bands?from=Manuel_Probuilder_EN

Chapter I : Fundamenta ls

Adding customizable variables

When you code an indicator, you may want to use customizable variables. The variables option in the upper-
left corner of the window allows you to assign a default value to an undefined variable in your program and
change its value in the settings window of the indicator without modifying the code of your program.
Let’s calculate a simple moving average on 20 periods:
RETURN Average[20](Close)

In order to modify the number of periods for the calculation directly from the indicator "Settings" interface,
replace 20 with the variable "n":
RETURN Average[n](Close)

Then, click on the wrench button next to "Variables" and another window named "Variable definition" will be
displayed.
Enter the name of your variable, here "n", and press “Enter” (or click “Add”). You can then fill in a description
to be displayed in the indicator’s property window, a Type and a Default Value as shown in the example
below:

V 6.1.0 – 20251201 www.prorealtime.com 17 / 62

Chapter I : Fundamenta ls

In the "Settings" tab you will see a new parameter which will allow you to modify the number of periods used
in the calculation of the moving average:

List of available types for variables:
Integer: integer between -2,000,000,000 and 2,000,000,000 (ex: 450)
Decimal: decimal number with a precision of 5 significant digits (ex: 1.03247)
Boolean: True (1) or False (0)
Moving Average Type: Allows you to set the value of the second parameter which defines the type

of moving average used in the calculation of the Average indicator (see above).

Of course, it is possible to create many variables giving you the possibility to manipulate multiple parameters
at the same time.

V 6.1.0 – 20251201 www.prorealtime.com 18 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

Chapter II: Math Functions and ProBuilder instructions

Control Structures

Conditional IF instruction

The IF instruction is used to make a choice of conditional actions, i.e. to make a result dependent on the
verification of one or more defined conditions.
The structure is made up of the instructions IF, THEN, ELSE, ELSIF, ENDIF, which are used depending on the
complexity of the conditions you defined.

One condition, one result (IF THEN ENDIF)
We can look for a condition and define an action if that condition is true. On the other hand, if the condition is
not valid, then nothing will happen.
In this example, if the current price is greater than the 20-period moving average, then we display “Result =
1” on the chart.
Result = 0
IF Close > Average[20](Close) THEN
 Result = 1
ENDIF
RETURN Result

Result is equal to 0.
IF closing price > 20-period moving average
THEN Result = 1
OTHERWISE Result is unchanged
END OF CONDITION

One condition, two results (IF THEN ELSE ENDIF)
We can also define a different result if the condition is not true. Let us go back to the previous example: if the
price is greater than the moving average on 20 periods, then display 1, else, displays -1.
IF Close > Average[20](Close) THEN
 Result = 1
ELSE
 Result = -1
ENDIF
RETURN Result
NB: We have created a binary indicator. For more information, see the section on binary and ternary
indicators later in this manual.

Sequential IF conditions
You can create sub-conditions after the validation of the main condition, meaning conditions which must be
validated one after another. For that, you need to build a sequence of IF structures, one included in the
other. You should be careful to insert in the code as many ENDIF as IF. Example:
Double conditions on moving averages:
IF Average[12](Close) > Average[20](Close) THEN
 IF ExponentialAverage[12](Close) > ExponentialAverage[20](Close) THEN
 Result = 1
 ELSE
 Result = -1
 ENDIF
ENDIF
RETURN Result

V 6.1.0 – 20251201 www.prorealtime.com 19 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

Multiple conditions (IF THEN ELSE ELSIF ENDIF)
You can define a specific result for a specific condition. The indicator reports many states: if Condition 1 is
valid then do Action1; else, if Condition 2 is valid, then do Action 2 …if none of the previously mentioned
conditions are valid then do Action n.
This structure uses the following instructions: IF, THEN, ELSIF, THEN.... ELSE, ENDIF.

The syntax is:
IF (Condition1) THEN
 (Action1)
ELSIF (Condition2) THEN
 (Action2)
ELSIF (Condition3) THEN
 (Action3)
...
ELSE
 (Action n)
ENDIF

You can also replace ELSIF with ELSE IF but your program will take longer to write. Of course, you will have
to end the loop with as many instance of ENDIF as IF. If you want to make multiple conditions in your
program, we advise you to use ELSIF rather than ELSE IF for this reason.

Example: detection of bearish and bullish engulfing lines using the Elsif instruction
This indicator displays 1 if a bullish engulfing line is detected, -1 if a bearish engulfing line is detected, and 0
if neither of them is detected.

// Detection of a bullish engulfing line
Condition1 = Close[1] < Open[1]
Condition2 = Open < Close[1]
Condition3 = Close > Open[1]
Condition4 = Open < Close

// Detection of a bearish engulfing line
Condition5 = Close[1] > Open[1]
Condition6 = Close < Open
Condition7 = Open > Close[1]
Condition8 = Close < Open[1]

IF Condition1 AND Condition2 AND Condition3 AND Condition4 THEN
 a = 1
ELSIF Condition5 AND Condition6 AND Condition7 AND Condition8 THEN
 a = -1
ELSE
 a = 0
ENDIF
RETURN a

V 6.1.0 – 20251201 www.prorealtime.com 20 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

Example: Resistance Demark pivot
IF DClose(1) > DOpen(1) THEN
 Phigh = DHigh(1) + (DClose(1) - DLow(1)) / 2
 Plow = (DClose(1) + DLow(1)) / 2
ELSIF DClose(1) < DOpen(1) THEN
 Phigh = (DHigh(1) + DClose(1)) / 2
 Plow = DLow(1) - (DHigh(1) - DClose(1)) / 2
ELSE
 Phigh = DClose(1) + (DHigh(1) - DLow(1)) / 2
 Plow = DClose(1) - (DHigh(1) - DLow(1)) / 2
ENDIF
RETURN Phigh , Plow

Example: BarIndex
In chapter I of our manual, we presented BarIndex as a counter of bars loaded. BarIndex is often used with
IF. For example, if we want to know if the number of bars in your chart exceeds 23 bars, then we will write:
IF BarIndex <= 23 THEN
 a = 0
ELSIF BarIndex > 23 THEN
 a = 1
ENDIF
RETURN a

Note: This code is shown as an example to describe how the IF instruction works. But here is a cleaner and
more readable way to reach the same result.

RETURN BarIndex > 23

V 6.1.0 – 20251201 www.prorealtime.com 21 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

Iterative FOR Loop

FOR is used when we want to exploit a finite series of elements. This series must be made up of whole
numbers (ex: 1, 2, 3, ..., 6, 7 or 7, 6, ..., 3, 2, 1) and ordered.
Its structure is formed of FOR, TO, DOWNTO, DO, NEXT. TO and DOWNTO are used depending on the order of
appearance in the series of the elements (ascending order or descending order). We also highlight the fact
that what is between FOR and DO are the extremities of the interval to scan.

Ascending loop (FOR, TO, DO, NEXT)
FOR Variable = BeginningValueOfTheSeries TO EndingValueOfTheSeries DO
 (Action)
NEXT

Example: Smoothing of a 12-period moving average
Let’s create a storage variable (Result) which will sum the 11, 12 and 13-period moving averages.
Result = 0
FOR Variable = 11 TO 13 DO
 Result = Result + Average[Variable](Close)
NEXT
// Let’s create a storage variable (AverageResult) which will divide Result by 3 and
display average result. Average result is a smoothing of the 12-period moving average.
AverageResult = Result / 3
RETURN AverageResult

Let's see what is happening step by step:
Mathematically, we want to calculate the average of the arithmetic moving averages of periods 11, 12 and
13.
Variable will thus take successively the values 11, 12 then 13

Result = 0
Variable = 11

Result receives the value of the previous Result + MA11 i.e.: (0) + MA11 = (0 + MA11)
The NEXT instruction takes us to the next value of the counter

Variable = 12

Result receives the value of the previous Result + MA12 or: (0 + MA11) + MA12 = (0 + MA11 + MA12)
The NEXT instruction takes us to the next value of the counter

Variable = 13

Result receives the value of the previous Result + MA13 or: (0 + MA11 + MA12) + MA13 = (0 + MA11 +
MA12 + MA13)
The value 13 is the last value of the counter.
NEXT closes the FOR loop because there is no more next value.
Result / 3 is displayed
This code simply means that Variable will initially take the value of the beginning of the series, then Variable
will take the next value (the previous one + 1) and so on until Variable exceeds or is equal to the value of the
end of the series. Then the loop ends.

V 6.1.0 – 20251201 www.prorealtime.com 22 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

Example: Average of the highest value over the last 5 bars
SUMhigh = 0
IF BarIndex < 4 THEN
 MAhigh = Undefined
ELSE
 FOR i = 0 TO 4 DO
 SUMhigh = High[i]+SUMhigh
 NEXT
ENDIF
MAhigh = SUMhigh / 5
RETURN MAhigh

If there are not yet 5 periods displayed
Then we attribute to MAhigh value "Undefined" (not displayed)
ELSE
FOR values of i between 0 to 4
We sum the 5 last "High" values

We calculate the average for the last 5 periods and
store the result in MAhigh
We display MAhigh

Note: This code is shown as an example to describe how the FOR loop works. But it is important to remember
that you should avoid using FOR loops whenever other alternatives exist. For example, this code is much
more readable, gives the same result, and is more optimized, it will therefore run significantly quicker:

Return Average[5](High)

Descending loop (FOR, DOWNTO, DO, NEXT)

The descending loop uses the following instructions: FOR, DOWNTO, DO, NEXT.
Its syntax is:

FOR Variable = EndingValueOfTheSeries DOWNTO BeginningValueOfTheSeries DO
 (Action)
NEXT

Let us go back to the previous example (the 5-period moving average of "High"):
Note that we have just reversed the limits of the scanned interval.

SUMhigh = 0
IF BarIndex < 4 THEN
 MAhigh = Undefined
ELSE
 FOR i = 4 DOWNTO 0 DO
 SUMhigh = High[i] + SUMhigh
 NEXT
ENDIF
MAhigh = SUMhigh / 5
RETURN Mahigh

V 6.1.0 – 20251201 www.prorealtime.com 23 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

Conditional WHILE Loop

WHILE is used to keep doing actions while a condition remains true. You will see that this instruction is very
similar to the simple conditional instruction IF/THEN/ENDIF.
This structure uses the following instructions: WHILE, (DO optional), WEND (end WHILE). Its syntax is:
WHILE (Condition) DO
 (Action 1)
 …
 (Action n)
WEND

This code lets you show the number of bars separating the current candlestick from a previous higher
candlestick within the limit of 30 periods.
i = 1
WHILE high > high[i] and i < 30 DO
 i = i + 1
WEND
RETURN i

Example: indicator calculating the number of consecutive increases
Increase = Close > Close[1]
Count = 0
WHILE Increase[Count] DO
 Count = Count + 1
WEND
RETURN Count

Note: This code is shown as an example to describe how the WHILE loop works. But it is important to
remember that you should avoid using WHILE loops whenever other alternatives exist. For example, the
following code is much more optimized, runs faster and gives the same result.It takes advantage of the fact
that ProBuilder code is run on each historical candle: incrementing a counter when the condition is verified
works as well as looking in the past for each candle but is more efficient.

Increase = Close > Close[1]
IF Increase THEN
 Count = Count + 1
ELSE
 Count = 0
ENDIF
RETURN Count

V 6.1.0 – 20251201 www.prorealtime.com 24 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

BREAK
The BREAK instruction allows you to make a forced exit out of a WHILE loop or a FOR loop. Combinations are
possible with the IF command, inside a WHILE loop or a FOR loop.

BREAK with WHILE
When we want to exit a conditional WHILE loop, we use BREAK in the following way:
WHILE (Condition) DO
 (Action)
 IF (ConditionBreak) THEN
 BREAK
 ENDIF
WEND

The use of BREAK in a WHILE loop is only interesting if we want to test an additional condition for which the
value can only be known inside the WHILE loop. For example, let’s look at a stochastic which is only
calculated in a bullish trend:
ret = 0
Increase = Close > Close[1]
i = 0
WHILE Increase[i] or BarIndex > 0 DO

i = i + 1
// If high = low, we exit the loop to avoid a division by zero.
IF high[i] = low[i] then
 BREAK

 ENDIF
osc = (close – low) / (high – low)
ret = AVERAGE[i](osc)

WEND
RETURN ret

V 6.1.0 – 20251201 www.prorealtime.com 25 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

BREAK with FOR
When we try to get out of an iterative FOR loop, without reaching the last value of the series, we use BREAK
this way.
FOR Variable = SeriesStartValue TO SeriesEndValue DO
 (Action)
 BREAK
NEXT
Let’s take for example an indicator cumulating increases of the volume of the last 19 periods. This indicator
will be equal to 0 if the volume decreases.
Count = 0
FOR i = 0 TO 19 DO
 IF Volume[i] > Volume[i + 1] THEN
 Count = Count + 1
 ELSE
 BREAK
 ENDIF
NEXT
RETURN Count
In this code, if BREAK weren’t used, the loop would have continued until 19 (last element of the series) even if
the condition count is not valid.
With BREAK, on the other hand, as soon as the condition is no longer validated, it returns the result.

V 6.1.0 – 20251201 www.prorealtime.com 26 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

CONTINUE
The CONTINUE instruction is used to finish the current iteration of a WHILE or FOR loop. This command is often
used with BREAK, either to leave the loop (BREAK) or to stay in the loop (CONTINUE).

CONTINUE with WHILE
Let’s create a program counting the number of candlesticks whose close and open are greater than those of
the candlestick preceding them. If the condition is not valid, then the counter will be reset to 0.

Increase = Close > Close[1]
condition = Open > Open[1]
Count = 0
WHILE condition[Count] DO
 IF Increase[Count] THEN
 Count = Count + 1
 CONTINUE
 ENDIF
 BREAK
WEND
RETURN Count

When using CONTINUE, if the IF condition is valid, then the WHILE loop is not ended. This allows us to count
the number of candlesticks detected with this condition verified. Without the CONTINUE instruction, the
program would leave the loop, whether the IF condition is verified or not. Then, we would not be able to
continue counting the number of candlesticks detected and the result would be binary (1, 0).

CONTINUE with FOR
Let’s create a program counting the number of candlesticks whose close and open are greater than those of
the candlestick preceding them. If the condition is not valid, then the counter will be reset to 0.

Increase = Close > Close[1]
Count = 0
FOR i = 1 TO BarIndex DO
 IF Increase[Count] THEN
 Count = Count + 1
 CONTINUE
 ENDIF
BREAK
NEXT
RETURN Count

FOR gives you the possibility to test the condition over all the data loaded. When used with CONTINUE, if the
IF condition is validated, then we do not leave the FOR loop and resume it with the next value of i. This is how
we count the number of patterns detected by this condition.
Without CONTINUE, the program would leave the loop, even if the IF condition is validated. Then, we would
not be able to count the number of patterns detected and the result would be binary (1, 0).

It is important to make sure to always have a valid exit condition for FOR and WHILE loops to ensure
that your code works properly and avoid infinite loops.

V 6.1.0 – 20251201 www.prorealtime.com 27 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

ONCE
The ONCE instruction is used to initialize a variable at a certain value "only once".
Knowing that for the whole program, the language will read the code for each bar displayed on the chart
before returning the result, you must then keep in mind that:

ONCE is processed only on the first encounter of the instruction.
Subsequent encounters will be ignored.
ONCE can also be used with an IF, a FOR and a WHILE loop.

To fully understand how this command works, you need to perceive how the language processes the
code, hence the usefulness of the next example.

These are two programs returnin 0 and 15 respectively and whose only difference is the ONCE command
added:

Program 1 Program 2
1
2
3
4
5
6
7

Count = 0
i = 0
IF i <= 5 THEN
 Count = Count + i
 i = i + 1
ENDIF
RETURN Count

1
2
3
4
5
6
7

ONCE Count = 0
ONCE i = 0
IF i <= 5 THEN
 Count = Count + i
 i = i + 1
ENDIF
RETURN Count

Let’s see how the language reads the code.

Program 1:
The language will read L1 (Count = 0; i = 0), then L2, L3, L4, L5 and L6 (Count = 0; i = 1), then return to L1
and reread everything exactly the same way. The result displayed is 0 (zero), as after the first reading.

Program 2:
For the first bar, the language will read L1 (Count = 0; i = 0), then L2, L3, L4, L5, L6 (Count = 0; i = 1). When
it arrives at the line "RETURN", it restarts the loop to calculate the value of the next bar starting from L3 (the
lines with ONCE are processed only one time), L4, L5, L6 (Count = 1; i = 2), then go back again (Count = 3;
i = 3) and so forth to (Count = 15; i = 6). Arrived at this result, the IF loop is not processed anymore because
the condition is not valid anymore; the only line left to read is L7, hence the result is 15 for the remaining bars
loaded.

V 6.1.0 – 20251201 www.prorealtime.com 28 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

Mathematical Functions

Common unary and binary Functions
Let’s focus now on the Mathematical Functions. You will find in ProBuilder the main functions known in
mathematics. Please note that a and b are examples and can be numbers or any other variable in your
program.

MIN(a,b): calculates the minimum of a and b
MAX(a,b): calculates the maximum of a and b
ROUND(a,n): rounds a to the nearest whole number, with a precision of n digits after the decimal point
ABS(a): calculates the absolute value of a
SGN(a): shows the sign of a (1 if positive, -1 if negative)
SQUARE(a): calculates a squared
SQRT(a): calculates the square root of a
LOG(a): calculates the Neperian logarithm of a
POW(a,b): calculates a raised to the power of b
EXP(a): calculates the exponent of a
COS(a) / SIN(a) / TAN(a): calculates the cosine/sine/tangent of a (in degrees)
ACOS(a) / ASIN(a) / ATAN(a): calculates the arc-cosine/arc-sine/arc-tangent (in degrees) of a.
FLOOR(a,n): returns the largest round number less than a with a precision of n
CEIL(a,n): returns the smallest round number greater than a with a precision of n
RANDOM(a,b): generates a random integer between a and b (included)

Let’s code the example of the normal distribution in mathematics. It’s interesting because it uses the square
function, the square root function and the exponential function:

// Normal Law applied to x = 10, StandardDeviation = 6 and MathExpectation = 8
// Let’s define the following variables in the variable option:
StandardDeviation = 6
MathExpectation = 8
x = 10
Indicator = EXP(- (1 / 2) * (SQUARE(x – MathExpectation) / StandardDeviation)) /
(StandardDeviation * SQRT(2 / 3.1415))
RETURN Indicator

Common mathematical operators
a < b: a is strictly less than b
a <= b or a =< b: a is less than or equal to b
a > b: a is strictly greater than b
a >= b or a => b: a is greater than or equal to b
a = b: a is equal to b (or b is attributed to a)
a <> b: a is different from b

Charting comparison functions
a CROSSES OVER b: curve a crosses over curve b
a CROSSES UNDER b: curve a crosses under curve b

V 6.1.0 – 20251201 www.prorealtime.com 29 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

Summation functions
CUMSUM: Calculates the sum of a price or indicator over all bars loaded on the chart

The syntax of cumsum is:

CUMSUM(price or indicator)

Ex: CUMSUM(Close) calculates the sum of the close of all the bars loaded on the chart.

SUMMATION: Calculates the sum of a price or indicator over the last n bars
The sum is calculated starting from the most recent value (from right to left)
The syntax of SUMMATION is:

SUMMATION[number of bars](price or indicator)

Ex: SUMMATION[20](Open) calculates the sum of the open of the last 20 bars.

Statistical functions
The syntax of all these functions is the same as the syntax for the Summation function, that is:

LOWEST[number of bars](price or indicator)

LOWEST: displays the lowest value of the price or indicator written between brackets, over the number of
periods defined

HIGHEST: displays the highest value of the price or indicator written between brackets, over the number
of periods defined

STD: displays the standard deviation of a price or indicator, over the number of periods defined
STE: displays the standard error of a price or indicator, over the number of periods defined

Logical operators

As in any programming language, it is necessary to have at our disposal some Logical Operators to create
relevant indicators. These are the 4 Logical Operators of ProBuilder:

NOT(a): logical NO
a OR b: logical OR
a AND b: logical AND
a XOR b: exclusive OR (a OR b but not a AND b)

V 6.1.0 – 20251201 www.prorealtime.com 30 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

ProBuilder instructions

RETURN: displays the result of your indicator
CALL: calls another ProBuilder indicator to use in your current program
AS: names the result displayed
COLOURED: colors the displayed curve with the color of your choice

RETURN
We have already seen in chapter I how important the RETURN instruction was. It has some specific properties
we need to know to avoid programming errors.
The main points to keep in mind when using RETURN in order to write a program correctly are that RETURN is
used:

Once and only once in each ProBuilder program
Always at the last line of code
Optionally with other functions such as AS, COLOURED and STYLE
To display many results; we write RETURN followed with what we want to display and separated with a

comma (example: RETURN a,b)

Comments
// or /**/ allow you to write comments inside the code. They are mainly useful to remember how a function
you coded works. These remarks will be read but of course not processed by the program. Let’s illustrate the
concept with the following example:
// This program returns the moving average over 20 periods applied to the closing price
RETURN Average[20](Close)

Don‘t use special characters (examples: é,ù,ç,ê,-,_,&…) in ProBuilder code. Special characters
may be used only within comments.

CustomClose
CustomClose is a variable allowing you to display the Close, Open, High, Low constants and many others,
which can be customized in the Settings window of the indicator.
Its syntax is the same as the one of the constants adapted to the timeframe of the chart:

CustomClose[n]
Example:
RETURN CustomClose[2]
By clicking on the wrench in the upper left corner of the chart, you will see that it is possible to customize the
prices used in the calculation.

CALCULATEONLASTBARS
This parameter allows you to increase the speed at which an indicator will be calculated by defining the
number of bars that can be used to calculate the indicator (less bars used in the calculation = faster
calculation speed).
Example: DEFPARAM CALCULATEONLASTBARS = 200

Warning: the use of the DEFPARAM instruction must be done at the beginning of the code.

V 6.1.0 – 20251201 www.prorealtime.com 31 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

CALL
CALL allows you to use a personal indicator you have previously coded on the platform.
The quickest method is to click “Insert Function” then select the "User Indicators" category and then select
the name of the indicator you want to use and click "Add".
For example, imagine you have coded the Histogram MACD and named it HistoMACD.
Select your indicator and click on "Add". You will see in the programming zone:

myHistoMACD = CALL "HistoMACD"

ProBuilder gave the name "myHistoMACD" to the variable representing your indicator "HistoMACD".
Here is an example when several variables are returned by your CALL:
myExponentialMovingAverage, mySimpleMovingAverage = CALL "Averages"

AS
The keyword AS allows you to name the different results displayed. This instruction is used with RETURN and
its syntax is:
RETURN Result1 AS "Curve Name1", Result2 AS "Curve Name2", …
This keyword makes it easier to identify the different curves on your chart.
Example:
a = ExponentialAverage[200](Close)
b = WeightedAverage[200](Close)
c = Average[200](Close)
RETURN a AS "Exponential Average", b AS "Weighted Average", c AS "Arithmetic Average"

V 6.1.0 – 20251201 www.prorealtime.com 32 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

COLOURED
COLOURED is used after the RETURN command to color the value displayed with the color of your choice,
defined with the RGB norm (Red, Green, Blue) or by using predefined colors.
The 140 predefined colors can be found in the following documentation:

W3School: HTML Color Names
Here are the main colors of the RGB standard as well as their predefined HTML name:

COLOR RGB VALUE (between 0 and 255)
(RED, GREEN, BLUE) HTML Color name

(0, 0, 0) Black

(255, 255, 255) White

(255, 0, 0) Red

(0, 255, 0) Green

(0, 0, 255) Blue

(255, 255, 0) Yellow

(0, 255, 255) Cyan

(255, 0, 255) Magenta

The syntax for using the COLOURED command is as follows:
RETURN Indicator COLOURED(RedValue, GreenValue, BlueValue)
Or alternatively:
RETURN Indicator COLOURED("cyan")
Optionally, you can control the opacity of your curve with the alpha parameter (between 0 and 255):
RETURN Indicator COLOURED(RedValue, GreenValue, BlueValue, AlphaValue)

The AS command can be associated with the COLOURED(. , . , .) command:
RETURN Indicator COLOURED(RedValue, GreenValue, BlueValue) AS "Name of the curve"

Let’s go back to the previous example and insert COLOURED in the "RETURN" line.
a = ExponentialAverage[200](Close)
b = WeightedAverage[200](Close)
c = Average[200](Close)
RETURN a COLOURED("red") AS "Exponential Moving Average", b COLOURED("green") AS
"Weighted Moving Average", c COLOURED("blue") AS "Simple Moving Average"

This picture shows you the color customization of the result.

V 6.1.0 – 20251201 www.prorealtime.com 33 / 62

https://www.w3schools.com/colors/colors_names.asp

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

V 6.1.0 – 20251201 www.prorealtime.com 34 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

Drawing instructions
These commands allow you to draw objects on the charts but also to customize your candles, the bars of
your charts as well as the colors of all these elements.
For each instruction below, the color can be defined in a similar way to the color of your curve (COLOURED
instruction above) with either a predefined color (HTML Color Name) in quotes, or an RGB value (R,G,B) on
which you can apply an alpha opacity parameter: (HTML Color Name,alpha) or (R,G,B,alpha)

BACKGROUNDCOLOR(R, G, B, a): Lets you color the background of the chart or specific bars (such as
odd/even days). The colored zone starts halfway between the previous bar and the next bar
Example: BACKGROUNDCOLOR (0, 127, 255, 25)
It is possible to use a variable for the colors if you want the background color to change based on your
conditions.
Example: BACKGROUNDCOLOR (0, color, 255, 25)

COLORBETWEEN: Allows you to fill the space between two values with a certain color.
Example: COLORBETWEEN (open, close, "white")

DRAWBARCHART: Draws a custom bar on the chart. Open, high, low and close can be constants or
variables.
Example: DRAWBARCHART (open, high, low, close) COLOURED (0, 255, 0)

DRAWCANDLE: Draws a custom candlestick on the chart. Open, high, low and close can be constants or
variables.
Example: DRAWCANDLE (open, high, low, close) COLOURED ("black")

V 6.1.0 – 20251201 www.prorealtime.com 35 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

For all the drawing instructions below, the x-axis is expressed by default as a bar number (BARINDEX) and
the y-axis corresponds to the vertical scale of the values in your graph. However, you can change this
behavior with the ANCHOR command described later.

DRAWARROW: Draws an arrow pointing right. You need to define a point for the arrow (x and y axis). You
can also choose a color.
Example: DRAWARROW (x1, y1) COLOURED (R, G, B, a)

DRAWARROWUP: Draws an arrow pointing up. You need to define a point for the arrow (x and y axis). You
can also choose a color.
Example: DRAWARROWUP (x1, y1) COLOURED (R, G, B, a)
This is useful to add visual buy signals.

DRAWARROWDOWN: Draws an arrow pointing down. You need to define a point for the arrow (x and y axis).
You can also choose a color.
Example: DRAWARROWDOWN (x1, y1) COLOURED (R, G, B, a)

This is useful to add visual sell or buy signals.

DRAWRECTANGLE: Draws a rectangle on the chart.

Example: DRAWRECTANGLE (x1, y1, x2, y2) COLOURED (R, G, B, a)
DRAWTRIANGLE: Draws a triangle on the chart.

Example: DRAWTRIANGLE (x1, y1, x2, y2, x3, y3) COLOURED (R, G, B, a)
DRAWELLIPSE: Draws an ellipse on the chart.

Example: DRAWELLIPSE (x1, y1, x2, y2) COLOURED (R, G, B, a)

V 6.1.0 – 20251201 www.prorealtime.com 36 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

DRAWPOINT: Draws a point on the chart.
Example: DRAWPOINT (x1, y1, pointSize) COLOURED (R, G, B, a)

DRAWLINE: Draws a line on the chart.
Example: DRAWLINE (x1, y1, x2, y2) COLOURED (R, G, B, a)

DRAWHLINE: Draws a horizontal line on the chart.
Example: DRAWHLINE (y1) COLOURED (R, G, B, a)

DRAWVLINE: Draws a vertical line on the chart.
Example: DRAWVLINE (x1) COLOURED (R, G, B, a)

DRAWSEGMENT: Draws a segment on the chart.
Example: DRAWSEGMENT (x1, y1, x2, y2) COLOURED (R, G, B, a)
Example: DRAWSEGMENT (barindex, close, barindex[5], close[5])

DRAWRAY: Draws a ray on the graph
Example: DRAWRAY (x1, y1, x2, y2)

DRAWTEXT: Adds a text field to the chart with text of your choice at a specified location.The syntax #Variable#
allows the display of the value of Variable inside a text.
Example: DRAWTEXT(value, x1, y1, font, fontStyle, fontSize) COLOURED (R,G,B,a)
Example: DRAWTEXT("your text", x1, y1, SERIF, BOLD, 10) COLOURED (R, G, B, a)
Example: DRAWTEXT("My Variable is #Variable#", x1, y1) COLOURED ("green")

V 6.1.0 – 20251201 www.prorealtime.com 37 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

Here are the different possible values for the font and font style parameters, the font size is between 1
and 30:

Font Font style

DIALOG STANDARD

MONOSPACED BOLD

SANSERIF BOLDITALIC

SERIF ITALIC

DRAWONLASTBARONLY: Parameter that lets you draw objects on the last bar only. This parameter should
always be used with "CALCULATEONLASTBARS" to optimize calculations.
Example: DEFPARAM DRAWONLASTBARONLY = true

Additional parameters
For some of these design commands, various additional instructions can be applied in no particular order:

BORDERCOLOR
This instruction allows you to define the color of the border of a drawn object (excluding lines and arrows).
Example 1: DRAWRECTANGLE(barindex, close, barindex[5], close[5]) BORDERCOLOR(r,g,b,a)
Example 2: DRAWRECTANGLE(barindex, close, barindex[5], close[5]) BORDERCOLOR("red")

ANCHOR
This instruction allows you to define the anchor point of the object when you want to draw it from a starting
point other than the candlesticks.

DRAWTEXT(“text”, n, p) ANCHOR(referencePoint, horizontalShift, verticalShift)

It can take several values as parameters:
Parameter 1: the position of the anchor

Value Description

TOPLEFT Fixed at the top left of the chart

TOP Fixed at the top of the chart (middle)

TOPRIGHT Fixed at the top right of the chart

RIGHT Fixed to the right of the graph (middle)

BOTTOMRIGHT Fixed at the bottom right of the chart

BOTTOM Fixed at the bottom of the graph (middle)

BOTTOMLEFT Fixed at the bottom left of the chart

LEFT Fixed to the left of the graph (middle)

MIDDLE Fixed in the center of the graph

V 6.1.0 – 20251201 www.prorealtime.com 38 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

Parameter 2: the type of value to set the positioning on the horizontal axis
INDEX: The values entered in the drawing of the object for the horizontal axis will refer to the

barindex of the candlesticks
XSHIFT: The values entered in the drawing of the object for the horizontal axis will refer to an offset

value in pixels (positive or negative with respect to an orthonormal reference frame)
Parameter 3: the type of value to set the positioning on the vertical axis

VALUE: The values entered in the drawing of the object for the vertical axis will refer to a price
YSHIFT: The values entered in the drawing of the object for the vertical axis will refer to an offset

value in pixels (positive or negative with respect to an orthonormal reference frame)

Examples:
DRAWTEXT(“My Variable value: #Var#”, -20, -50) ANCHOR(TOPRIGHT, XSHIFT, YSHIFT)
Displays the Var variable value at the top right of the graph with an offset of -20 on the horizontal axis and -
50 on the vertical axis.
DRAWTEXT("Top", Barindex-10, -20) ANCHOR(TOP, INDEX, YSHIFT)
Draws the text "Top" at the top of the chart with an offset of -20 on the vertical axis and positioned in the
continuity of the 10th BarIndex before the last bar.

STYLE
This instruction allows you to define a style for objects (except arrows) or for returned values.

DRAWRECTANGLE(x1, y1, x2, y2) STYLE(style, lineWidth)
There are different styles:
DOTTEDLINE: this style transforms the line into a dotted line. There are 5 different configurations that

represent 5 different dotted line lengths: DOTTEDLINE, DOTTEDLINE1, DOTTEDLINE2, DOTTEDLINE3,
DOTTEDLINE4
LINE: this style restores the default line style (full line)
HISTOGRAM: this style, only applicable in the RETURN instruction of an indicator, displays the returned

values as a histogram.
POINT: this style, only applicable in the RETURN instruction of an indicator, displays the returned values

as a point.
LineWidth, which defines the thickness of the line, will take a value between 1 (the thinnest) and 5 (the
thickest).

V 6.1.0 – 20251201 www.prorealtime.com 39 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

Note: for the drawing functions it is possible to specify a date rather than a candlestick index thanks to the
DateToBarIndex function which allows you to transform a date to the nearest associated bar index.
The instruction is written in the following form:
DateToBarIndex(date)

Expected date formats:
YYYY / Example: 2022
YYYYMM / Example: 202208
YYYYMMDD / Example: 20220815
YYYYMMDDHH / Example: 2022081517
YYYYMMDDHHMM / Example: 202208151730
YYYYMMDDHHMMSS / Example: 20220815173020

V 6.1.0 – 20251201 www.prorealtime.com 40 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

Multi-period instructions
ProBuilder allows you to work on different time periods in your Backtests, Indicators and Screeners, giving
you access to more complete data when designing your codes. The instruction is structured as follows:

TIMEFRAME(X TimeUnit , Mode)
With the following parameters:

TimeUnit: The type of period chosen (see List of available time frames)
X: The value associated with the selected period
Mode: The selected calculation mode (optional)

Example: TIMEFRAME(1 Hour)

You can use multi-timeframe instructions only to call time units greater than your base time unit (time unit of
the chart).
The secondary time units called must also be a multiple of the base time unit .

Thus, on a 10-minutes chart:
We can call the following time frames: 20 minutes, 1 hour, 1 day.
We can't call the 5 minutes or 17 minutes time frames.

To enter a higher time frame, you need to use the instruction:
TIMEFRAME(X TimeUnit)
To return to the base time frame of the chart, use the following command:
TIMEFRAME(DEFAULT)

You can also indicate the time frame of the base chart.
The platform editor colors the background of the code blocks in higher TimeFrame to help you visualize the
pieces of code calculated in each different time frame.

V 6.1.0 – 20251201 www.prorealtime.com 41 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

It is also possible to use two calculation modes in a larger time unit in order to have more flexibility in your
calculations:

TIMEFRAME(X TimeUnit , DEFAULT)
TIMEFRAME(X TimeUnit , UPDATEONCLOSE)

DEFAULT: this is the default mode of the TimeFrame (mode used when the second parameter is not
specified), the calculations in the higher time frames are performed at each new price received in the base
time unit of the chart.

UPDATEONCLOSE: the calculations contained in a time frame in this mode are performed at the closing of the
candlestick of the higher time frame.

Here is an example of code showing the difference between the two calculation modes:

// Average price computation between opening and closing in the two available modes.
TIMEFRAME(1 Hour)
MidPriceDefault=(Open+Close)/2

TIMEFRAME(1 Hour, UPDATEONCLOSE)
MidPriceUpdateOnClose=(Open+Close)/2

Return MidPriceDefault as "Average Price Default mode" COLOURED ("DarkSeaGreen"),
MidPriceUpdateOnClose as "Average Price UpdateOnClose mode" COLOURED ("DarkRed")

Here we notice that my MidPriceDefault (in green) is updated after every 5 minute candlestick, while
MidPriceUpdateOnClose (in red) is updated after every 1 hour candlestick.

V 6.1.0 – 20251201 www.prorealtime.com 42 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

Note on the use of the TIMEFRAME instruction:
A variable calculated in one time frame cannot be overwritten by a calculation in another time frame,

on the other hand the variables can be used in all time frames contained in the same code.
There is a limit of 10 TIMEFRAME intraday instructions (smaller than daily) for automatic trading and

backtesting.
For the ProScreener module, only the DEFAULT mode is available, so it is not necessary to specify

the mode. Moreover, in order to guarantee the performance of calculations on many real time values,
only a predefined list of available time frames is authorized for this module.
For more information, please read the Programming Guide - Market Scans (ProScreener).

List of available time frames

Periods Examples

Tick / Ticks TIMEFRAME(1 Tick)

sec / Second / Seconds TIMEFRAME(10 Seconds)

mn / Minute / Minutes TIMEFRAME(5 Minutes)

Hour / Hours TIMEFRAME(1 Hour)

Day / Days TIMEFRAME(5 Days)

Week / Weeks TIMEFRAME(1 Weeks)

Month / Months TIMEFRAME(2 Month)

Year / Years TIMEFRAME(1 Year)

V 6.1.0 – 20251201 www.prorealtime.com 43 / 62

https://www.prorealtime.com/fr/manuel-aide/probuilder-indicateurs-personnels?from=Manuel_Probuilder_EN

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

Arrays (Data tables)

In order to be able to store several values on the same candlestick or to store values only when necessary,
we suggest you to use Arrays (data tables) instead of variables.

A code can contain as many arrays as necessary, which can contain up to one million values each.

An array is always prefixed with the $ symbol.

Syntax of a variable Syntax of an array
A $A

An array starts from index 0 to index 999 999

Index 0 1 2 3 4 5 6 ... 999 999

Value

 To insert a value in an array, simply use

$Array[Index] = value
For example if we want to insert the value of the calculation of the moving average of period 20 at index 0 of
array A, we will write:

$A[0] = Average[20](Close)
To read the value of an index of the array, we will use, on the same principle:

$Array[Index]
For example if we want to create a condition that checks that the close is greater than the value of the first
index of the array A:

Condition = Close > $A[0]
When inserting a value at an index n of an array, ProBuilder will initialize the values to zero for all the
undefined indices from 0 to n-1 in order to facilitate the use of the data contained in this array.

V 6.1.0 – 20251201 www.prorealtime.com 44 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

Specific functions
Several functions specific to arrays are available to facilitate their manipulation and use:

ArrayMax($Array): returns the highest value of the array that has been defined. The zeros filled

automatically by ProBuilder are not taken into account.

ArrayMin($Array): returns the smallest value of the array that has been defined. The zeros filled

automatically by ProBuilder are not taken into account.

ArraySort($Array, MODE): Sorts the array in ascending order (mode=ASCEND) or in descending

order (mode=DESCEND). The zeros filled automatically by ProBuilder will then be removed.

IsSet($Array[index]): returns 1 if the index of the array has been defined, 0 if it has not been

defined. The zeros filled automatically by ProBuilder are not considered as having been defined so the
function will return 0 on these indices.

LastSet($Array): returns the highest defined index of the array, if no index has been defined in the

array, the function will return -1.

UnSet($Array): Resets the array to 0 by completely deleting its content.

Note: unlike variables and other calculations performed in our language, arrays are not historized. It is
therefore not possible to retrieve the value of a cell from an array calculated on a previous candlestick.

If you want to see examples of how to use these functions, we recommend this link from our partner
ProRealCode which details the use of arrays through different examples.

V 6.1.0 – 20251201 www.prorealtime.com 45 / 62

https://www.prorealcode.com/topic/array-variables-availability-in-prorealtime/

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

PRINT

PRINT is used to display variable values from the ProBuilder program in a table format along with the Date
and the BarIndex.

It is very useful when coding and debugging. The syntax is as follows:

PRINT Var AS “Column header” FILLCOLOR (r,g,b,a) COLOURED (r,g,b,a)
Here is an example code and a possible output:

Av20 = Average[20]
Av50 = Average[50]
CrossingOver = Av20 CROSSES OVER Av50
CrossingUnder = Av20 CROSSES UNDER Av50
IF CrossingOver OR CrossingUnder THEN
 IF CrossingOver THEN
 r = 35
 g = 200
 ELSIF CrossingUnder THEN
 r = 200
 g = 35
 ENDIF
 PRINT Av20 AS "Average 20"
 PRINT Av50 AS "Average 50"
 PRINT Av20[1] AS "Average 20[1]" COLOURED(0,0,250)
 PRINT Av50[1] AS "Average 50[1]" COLOURED(0,0,250)
 PRINT CrossingOver - CrossingUnder AS "CrossingType" FILLCOLOR(r,g,75,126)
COLOURED(0,0,250)
ENDIF
RETURN CrossingOver – CrossingUnder

V 6.1.0 – 20251201 www.prorealtime.com 46 / 62

Chapter I I : Math Funct ions and ProBui lder inst ruct ions

Option:
FILLCOLOR: Allows you to set the background color of the cell displayed by Print.
COLOURED: Allows you to set the text color of the cell displayed by Print.
AS: Allows you to choose the column header dedicated to the variable (it is impossible to have two

columns with the same name).
Colors can be defined using RGBA parameters or W3C-standard color names. Please refer to the coloring
section (COLOURED) of the ProBuilder keywords, which follow the same rules.
Note: As shown in the example, a row is added to the table only when the instruction is encountered. PRINT
is therefore very handy to use inside IF loops. When ProBuilder codes become complex, certain variables
sometimes need to be non-zero or positive. To ensure this, it is convenient to use the PRINT instruction:
// ...
IF MyPositiveVariable < 0 THEN
 PRINT MyPositiveVariable AS "Error: SQRT of a negative variable"
ENDIF
OtherVariable = SQRT(MyPositiveVariable)
// ...

In this case, if everything goes well, no table will be displayed. However, you can be certain that
MyPositiveVariable is indeed positive throughout the entire history and will not cause issues downstream in
your code.
It is possible to display up to 10 different calculated values during the execution of the same code (any
values beyond the first ten will be ignored, PRINT statements that are never encountered throughout the
execution are not counted).
The displayed values window can hold a history of the 200 most recent calculations, which are updated in
real time as your code performs computations.

V 6.1.0 – 20251201 www.prorealtime.com 47 / 62

Chapter I I I : Pract ica l aspects

Chapter III: Practical aspects

Create a binary or ternary indicator: why and how ?

A binary or ternary indicator is by definition an indicator that can only return two or three possible results
(usually 0, 1 or -1). Its main use in a stock market context is to make the verification of the conditions that
constitute the indicator immediately identifiable.

Uses of a binary or ternary indicator:
Enable the detection of the main Japanese candlestick patterns
Facilitate the reading of a chart graph when trying to verify several conditions at once
So that you can place standard one-condition alerts on an indicator that contains multiple conditions.
Detecting complex conditions also on historical data
Facilitate the creation or execution of a backtest

Binary or ternary indicators are constructed using the IF function. We advise you to reread the relative
section before continuing reading.

Let’s picture the creation of these indicators to detect price patterns:

Binary Indicator: hammer detection

Hammer = Close > Open AND High = Close AND (Open-Low) >= 3*(Close-Open)
IF Hammer THEN
 Result = 1
ELSE
 Result = 0
ENDIF
RETURN Result AS "Hammer"

This simplified code will also give the same results:

Hammer = Close > Open AND High = Close AND (Open – Low) >= 3 * (Close – Open)
RETURN Hammer AS "Hammer"

V 6.1.0 – 20251201 www.prorealtime.com 48 / 62

Chapter I I I : Pract ica l aspects

Ternary Indicator: Golden Cross and Death Cross detection
EA10 = ExponentialAverage[10](Close)
EA20 = ExponentialAverage[20](Close)

GoldenCross = EA10 CROSSES OVER EA20
DeathCross = EA10 CROSSES UNDER EA20

// Boolean variables are either 0 or 1 so, when mutually exclusive, substracting two
Boolean variables gives a 3-state variable (0-1=-1,0-0=0,or 1-0=1)
Cross = goldenCross – deathCross

RETURN Cross STYLE (HISTOGRAM) COLOURED(DeathCross*210,GoldenCross*210,100)

Note: we have displayed the exponential moving average over 10 and 20 periods both applied to the close in
order to highlight the results of the indicator.
You can find other candlestick pattern indicators in the "Exercises" chapter later in this manual.

V 6.1.0 – 20251201 www.prorealtime.com 49 / 62

Chapter IV: Exercises

Chapter IV: Exercises

Candlestick patterns
GAP UP or DOWN

The color of the candlesticks is not important.
We define a customizable variable, Amplitude = 0.001
A gap is defined by these two conditions:

(the current low is strictly greater than the high of the previous bar) or (the current high is strictly lesser
than the low of the previous bar)

the absolute value of ((the current low – the high of the previous bar)/the high of the previous bar) is
strictly greater than amplitude or ((the current high – the low of the previous bar)/the low of the previous
bar) is strictly greater than amplitude

ONCE Amplitude = 0.001
// useDailyCandle allows you to use DHigh and DLow instead of High and Low
// Gaps are usually computed on Daily candles but it can be interesting to compute them
on other timeframes
ONCE useDailyCandle = 1

IF useDailyCandle THEN
 GapUpc1 = DLow(0) > DHigh(1)
 GapUpc2 = ABS((DLow(0) - DHigh(1)) / DHigh(1)) > Amplitude
 GapDownc1 = DHigh(0) < DLow(1)
 GapDownc2 = ABS((DHigh(0) - DLow(1)) / DLow(1)) > Amplitude
ELSE
 GapUpc1 = Low > High[1]
 GapUpc2 = ABS((Low - High[1]) / High[1]) > Amplitude
 GapDownc1 = High < Low[1]
 GapDownc2 = ABS((High - Low[1]) / Low[1]) > Amplitude
ENDIF
GapUp = GapUpc1 AND GapUpc2
GapDown = GapDownc1 AND GapDownc2
// Drawing a horizontal line to highlight the level 0 (no gap)
DRAWHLINE(0) STYLE (DOTTEDLINE2) COLOURED("blue")
// Boolean variables are either 0 or 1 so, when mutually exclusive, substracting 2
boolean variables gives a 3-state variable (0-1=-1,0-0=0,or 1-0=1)
RETURN GapUp - GapDown AS "Gap" STYLE (HISTOGRAM) COLOURED(GapDown*210,GapUp*210,100)

V 6.1.0 – 20251201 www.prorealtime.com 50 / 62

Chapter IV: Exercises

Doji (flexible version)

In this code, we define a doji to be a candlestick with a range (High – Close) greater
than 5 times the absolute value of (Open – Close).

Doji = Range > ABS(Open - Close) * 5
RETURN Doji AS "Doji"

Doji (strict version)

We define the doji with a Close equal to its Open.

Doji = (Open = Close)
RETURN Doji AS "Doji"

V 6.1.0 – 20251201 www.prorealtime.com 51 / 62

Chapter IV: Exercises

Indicators

BODY MOMENTUM
Body Momentum is mathematically defined by: BodyMomentum = 100 * BodyUp / (BodyUp + BodyDown)
BodyUp is a counter of bars for which close is greater than open during a certain number of periods (in this
example : 14).
BodyDown is a counter of bars for which open is greater than close during a certain number of periods (in
this example : 14).

ONCE Periods = 14

// Since (Close > Open) and (Close < Open) are boolean variables their value is
either 0 (false) or 1 (true).
// Thus applying summation on these variables allows us to count the number of cases
where the boolean variable is true within the time window (here 14)
BodyUp = summation[Periods](Close > Open)
BodyDown = summation[Periods](Close < Open)

BodyM = (BodyUp / (BodyUp + BodyDown)) * 100

RETURN BodyM AS "Body Momentum"

ELLIOTT WAVE OSCILLATOR
The Elliott wave oscillator shows the difference between two moving averages.
This oscillator permits to distinguish between wave 3 and wave 5 using Elliott wave theory.
The short MA shows short-term price action whereas the long MA shows the longer term trend.
When the prices form wave 3, the prices climb strongly which shows a high value of the Elliott Wave
Oscillator.
In wave 5, the prices climb more slowly, and the oscillator will show a lower value.

RETURN Average[5](MedianPrice) - Average[35](MedianPrice) AS "Elliott Wave Oscillator"

V 6.1.0 – 20251201 www.prorealtime.com 52 / 62

Chapter IV: Exercises

Williams %R
This is an indicator very similar to the Stochastic oscillator. To draw it, we define 2 curves:
1) The curve of the highest high over 14 periods
2) The curve of the lowest low over 14 periods
The %R curve is defined by this formula: (Close – Lowest Low) / (Highest High – Lowest Low) * 100

HighestH = highest[14](High)
LowestL = lowest[14](Low)
MyWilliams = (Close - LowestL) / (HighestH - LowestL) * 100
RETURN MyWilliams AS "Williams %R"

Bollinger Bands
The middle band is a simple 20-period moving average applied to close.
The upper band is the middle band plus 2 times the standard deviation over 20 periods applied to close.
The lower band is the middle band minus 2 times the standard deviation over 20 periods applied to close.

ONCE Per = 20
ONCE nbSTD = 2

Bmid = Average[Per](Close)
StdDeviation = STD[Per](Close)

Bsup = Bmid + nbSTD * StdDeviation
Binf = Bmid - nbSTD * StdDeviation

RETURN Bmid AS "Average", Bsup AS "Bollinger Up", Binf AS "Bollinger Down"

You can visit our ProRealTime community on the ProRealCode forum to find online documentation and
many more examples.

V 6.1.0 – 20251201 www.prorealtime.com 53 / 62

https://www.prorealcode.com/prorealtime-documentation/
https://www.prorealcode.com/forums/

Glossary

Glossary
A

CODE SYNTAX FUNCTION

ABS ABS(a) Mathematical function "Absolute Value" of a.

AccumDistr AccumDistr(price) Classical Accumulation/Distribution indicator.

ACOS ACOS(a) Mathematical function "Arc cosine” (returns an angle in degrees).

AdaptiveAverage AdaptiveAverage[x,y,z](price) Adaptive Average Indicator.

ADX ADX[N] Indicator Average Directional Index or "ADX" of n periods.

ADXR ADXR[N] Indicator Average Directional Index Rate or "ADXR" of n periods.

AND a AND b Logical AND Operator.

‍ArrayMax ArrayMax($MyArray) Returns the max value of the array.

‍ArrayMin ArrayMin($MyArray) Returns the min value of the array.

‍ArraySort ArraySort($MyArray, ASCEND) Sort the table in ascending (ASCEND) or descending (DESCEND) order.

AroonDown AroonDown[P] Aroon Down indicator.

AroonUp AroonUp[P] Aroon Up indicator.

ATAN ATAN(a) Mathematical function "Arc tangent" (returns an angle in degrees).

ANCHOR ANCHOR(direction, index, yshift) Anchor function for drawings.

AS RETURN x AS "ResultName" Names a line or indicator displayed on chart. Used with "RETURN".

ASIN ASIN(a) Mathematical function "Arc sine" (returns an angle in degrees).

Average Average[N](price) Simple Moving Average of n periods.

AverageTrueRange AverageTrueRange[N](price) "Average True Range" - True Range smoothed with the Wilder method.

B

CODE SYNTAX FUNCTION

BACKGROUNDCOLOR BACKGROUNDCOLOR(R,G,B,a) Sets the background color of the chart or a specific bar.

BarIndex BarIndex Number of bars since the beginning of data loaded (in a chart in
the case of a ProBuilder indicator or for a trading system in the
case of ProBacktest or ProOrder).

‍BarsSince BarsSince(condition,occurence) Returns the number of candles since the nth occurrence of the
specified condition (n=0 means last occurrence and is the default,
n=1 means second last occurrence).

Bold DRAWTEXT(« text »,barindex,close,Serif,Bold, 10) Bold style to be applied to the text.

BoldItalic DRAWTEXT(« text »,barindex,close,Serif,BoldItalic,
10)

Bold italic style to be applied to the text.

BollingerBandWidth BollingerBandWidth[N](price) Bollinger Bandwidth indicator.

BollingerDown BollingerDown[N](price) Lower Bollinger band.

BollingerUp BollingerUp[N](price) Upper Bollinger band.

BOTTOM ANCHOR(BOTTOM,INDEX,YSHIFT) Anchor at the bottom of the chart.

BOTTOMLEFT ANCHOR(BOTTOMLEFT,INDEX,YSHIFT) Anchor at the bottom left of the chart.

BOTTOMRIGHT ANCHOR(BOTTOMRIGHT,INDEX,YSHIFT) Anchor at the bottom right of the chart.

BORDERCOLOR BORDERCOLOR("red") Adds a colored border to the associated object.

BREAK (FOR/DO/BREAK/NEXT) or
(WHILE/DO/BREAK/WEND)

Instruction to exit a FOR or a WHILE loop.

V 6.1.0 – 20251201 www.prorealtime.com 54 / 62

Glossary

C

CODE SYNTAX FUNCTION

CALCULATEONLASTBARS DEFPARAM CalculateOnLastBars =
200

Lets you decrease the calculation time by defining the number of bars to display
the results on, starting with the most recent bar.

CALL myResult = CALL myFunction Calls a user indicator to be used in the program you are coding.

CCI CCI[N](price) Commodity Channel Index indicator.

CEIL CEIL(N, M) Returns the smallest number greater than N applied to the decimal m.

ChaikinOsc ChaikinOsc[Ch1, Ch2](price) Chaikin oscillator.

Chandle Chandle[N](price) Chande Momentum Oscillator.

ChandeKrollStopUp ChandeKrollStopUp[Pp, Qq, X] Chande and Kroll Protection Stop on long positions.

ChandeKrollStopDown ChandeKrollStopDown[Pp, Qq, X] Chande and Kroll Protection Stop on short positions.

Close Close[N] Closing price of the current bar or of the nth last bar.

COLOURED RETURN x COLOURED(R,G,B) Colors a curve with the color you defined using the RGB convention.

COLORBETWEEN COLORBETWEEN(a, b, color) Color the space between two values.

COS COS(a) Cosine function (‘a’ argument in degrees).

CROSSES OVER a CROSSES OVER b Boolean Operator checking whether a curve has crossed over another one.

CROSSES UNDER a CROSSES UNDER b Boolean Operator checking whether a curve has crossed under another one.

Cumsum Cumsum(price) Sums a certain price on the whole data loaded.

CurrentDayOfWeek CurrentDayOfWeek Represents the current day of the week.

CurrentHour CurrentHour Represents the current hour.

CurrentMinute CurrentMinute Represents the current minute.

CurrentMonth CurrentMonth Represents the current month.

CurrentSecond CurrentSecond Represents the current second.

CurrentTime CurrentTime Represents the current time (HHMMSS).

CurrentYear CurrentYear Represents the current year.

CustomClose CustomClose[N] Constant which is customizable in the settings window of the chart (default:
Close).

Cycle Cycle(price) Cycle Indicator.

D

CODE SYNTAX FUNCTION

Date Date[N] Reports the date of each closing bar loaded on the chart.

DATETOBARINDEX DATETOBARINDEX(date) Allows you to use a date for the drawing functions.

Day Day[N] Day number at the end of the N-th candle.

Days Days[N] Counter of days since 1900.

Days TIMEFRAME(X Days) Set the period to "X Days" for further calculations of the code.

DayOfWeek DayOfWeek[N] Day of the week of each closing bar.

DClose DClose(N) Close of the nth day before the current one.

‍Decimals Decimals Returns the number of decimals of the ticker.

DEMA DEMA[N](price) Double Exponential Moving Average.

DHigh DHigh(N) High of the n-th day before the current bar.

Dialog DRAWTEXT(« text »,barindex,close,Di
alog,Bold, 10)

Dialog font applied to text.

DI DI[N](price) Represents the Demand Index indicator.

DIminus DIminus[N](price) Represents the DI- indicator.

DIplus DIplus[N](price) Represents the DI+ indicator.

V 6.1.0 – 20251201 www.prorealtime.com 55 / 62

Glossary

CODE SYNTAX FUNCTION

DivergenceCCI DivergenceCCI[Div1,Div2,Div3,Div4] Indicator for detecting discrepancies between price and the CCI.

DivergenceMACD DivergenceMACD[Div1,Div2,Div3,Div4]
(close)

Indicator for detecting divergences between the price and the MACD.

DivergenceRSI DivergenceRSI[Div1,Div2,Div3,Div4]
(close) Indicator for detecting divergences between the price and the RSI.

DLow DLow(N) Low of the nth day before the current one.

DO See FOR and WHILE Optional instruction in FOR loop and WHILE loop to define the loop action.

DonchianChannelCente
r

DonchianChannelCenter[N] Middle channel of the Donchian indicator for N periods.

DonchianChannelDown DonchianChannelDown[N] Lower channel of the Donchian indicator for N periods.

DonchianChannelUP DonchianChannelUp[N] Upper channel of the Donchian indicator for N periods.

DOpen DOpen(N) Open of the nth day before the current one.

DOTTEDLINE STYLE(DOTTEDLINE1/2/3/4, width) Style applicable to the features of an object.

DOWNTO See FOR Instruction used in FOR loop to process the loop with a descending order.

DPO DPO[N](price) Detrended Price Oscillator.

DRAWARROW DRAWARROW(x1,y1) Draw an arrow pointing right at the selected point.

DRAWARROWDOWN DRAWARROWDOWN(x1,y1) Draw a down at the selected point.

DRAWARROWUP DRAWARROWUP(x1,y1) Draw an up arrow at the selected point.

DRAWBARCHART DRAWBARCHART(open,high,low,clos
e)

Draws a custom bar on the chart. Open, High, Low, and Close can be constants
or variables.

DRAWCANDLE DRAWCANDLE(open,high,low,close) Draws a custom candlestick on the current barindex. Open, high, low, and close
can be constants or variables.

DRAWELLIPSE DRAWELLIPSE(x1,y1,x2,y2) Draws an ellipse on the chart.

DRAWHLINE DRAWHLINE(y1) Draws a horizontal line on the chart at the selected point.

DRAWLINE DRAWLINE(x1,y1,x2,y2) Draws a line on the chart between the two selected points.

DRAWONLASTBARONLY DEFPARAM DrawOnLastBarOnly =
true

Parameter that lets you draw drawn objects on the last bar only.

DRAWPOINT DRAWPOINT(x1,y1, optional size) Draw a point on the chart.

DRAWRAY DRAWRAY(x1,y1,x2,y2) Draw a ray on the chart.

DRAWRECTANGLE DRAWRECTANGLE(x1,y1,x2,y2) Draws a rectangle on the chart.

DRAWSEGMENT DRAWSEGMENT(x1,y1,x2,y2) Draws a segment on the chart.

DRAWTEXT DRAWTEXT("your text", x1, y1) Adds a text box on the chart at at the selected point with your text.

DRAWTRIANGLE DRAWTRIANGLE(x1, y1, x2, y2, x3,
y3)

Draws a triangle on the chart.

DRAWVLINE DRAWVLINE(x1) Draws a vertical line on the chart.

DynamicZoneRSIDown DynamicZoneRSIDown[N, M] Lower band of the Dynamic Zone RSI indicator.

DynamicZoneRSIUp DynamicZoneRSIUp[rsiN, N] Upper band of the Dynamic Zone RSI indicator.

DynamicZoneStochasti
cDown

DynamicZoneStochasticDown[N] Lower band of the Dynamic Zone Stochastic indicator.

DynamicZoneStochasti
cUp

DynamicZoneStochasticUp[N] Upper band of the Dynamic Zone Stochastic indicator.

E

CODE SYNTAX FUNCTION

EaseOfMovement EaseOfMovement[I] Ease of Movement indicator.

ElderrayBearPower ElderrayBearPower[N](close) Elder ray Bear Power indicator.

ElderrayBullPower ElderrayBullPower[N](close) Elder ray Bull Power indicator.

ELSE See IF/THEN/ELSE/ENDIF Instruction used to call the second condition of If-conditional statements.

V 6.1.0 – 20251201 www.prorealtime.com 56 / 62

Glossary

CODE SYNTAX FUNCTION

ELSIF See IF/THEN/ELSE/ENDIF Stands for Else If (to be used inside of conditional loop).

EMV EMV[N] Ease of Movement Value indicator.

ENDIF See IF/THEN/ELSE/ENDIF Ending Instruction of IF-conditional statement.

EndPointAverage EndPointAverage[N](price) End Point Moving Average.

EXP EXP(a) Mathematical Function "Exponential".

ExponentialAverage ExponentialAverage[N](price) Exponential Moving Average.

F – G – H

CODE SYNTAX FUNCTION

‍FILLCOLOR PRINT x FILLCOLOR (r,g,b) Sets the background color of the corresponding cell in the print table.

FractalDimensionIndex FractalDimensionIndex[N](close) Fractal Dimension Index indicator.

FOR/TO/NEXT FOR i =a TO b DO a NEXT FOR loop (processes all the values with an ascending (TO) or a descending order
(DOWNTO)).

ForceIndex ForceIndex(price) Force Index indicator determines who controls the market (buyer or seller).

FLOOR FLOOR(N, M) Returns the largest number less than N with a precision of M digits after the
decimal point.

‍GetTimeFrame GetTimeFrame Returns the number of seconds equivalent to the current time period (ex: 3600 for
a one hour time period).

High High[N] High of the current bar or of the nth last bar.

Highest Highest[N](price) Highest price over a number of bars to be defined.

‍HighestBars HighestBars[N] Returns the candlestick offset of the last highest value.

HISTOGRAM RETURN close STYLE(HISTOGRAM,
lineWidth)

Apply the histogram style on the returned value.

HistoricVolatility HistoricVolatility[N](price) Historic Volatility (or statistic volatility).

Hour Hour[N] Represents the hour of each closing bar loaded in the chart.

Hours TIMEFRAME(X Hours) Sets the period to "X Hours" for further code calculations.

HullAverage HullAverage[N](close) Designates the Hull Average indicator.

I - J - K

CODE SYNTAX FUNCTION

IF/THEN/ENDIF IF a THEN b ENDIF Group of conditional instructions without second instruction.

IF/THEN/ELSE/ENDIF IF a THEN b ELSE c ENDIF Group of conditional instructions.

IntradayBarIndex IntradayBarIndex[N] Counts how many bars are displayed in one day on the whole data loaded.

‍IsSet IsSet($MyArray[index]) Returns 1 if the index is defined in the array. Returns 0 if the index has not been
defined.

INDEX ANCHOR(TOPLEFT,INDEX,YSHIFT) Define the point value of the object on the horizontal axis as a barindex value.

Italic DRAWTEXT(« text »,barindex,close,S
erif,Italic, 10)

Italic style to be applied to the text.

KeltnerBandCenter KeltnerBandCenter[N] Central band of the Keltner indicator of N periods.

KeltnerBandDown KeltnerBandDown[N] Lower band of the Keltner indicator of N periods.

KeltnerBandUp KeltnerBandUp[N] Upper band of the Keltner indicator of N periods.

KijunSen KijunSen[T,K,S] Returns the KijunSen value of the Ichimoku indicator.

V 6.1.0 – 20251201 www.prorealtime.com 57 / 62

Glossary

L

CODE SYNTAX FUNCTION

‍LastSet LastSet($MyArray) Returns the highest defined index from the given Array.

LEFT ANCHOR(LEFT,INDEX,YSHIFT) Anchor to the left of the chart.

LINE STYLE(LINE, lineWidth) Standard line style.

LinearRegression LinearRegression[N](price) Linear Regression indicator.

LinearRegressionSlope LinearRegressionSlope[N](price) Slope of the Linear Regression indicator.

LOG LOG(a) Mathematical Function "Neperian logarithm" of a.

Low Low[N] Low of the current bar or of the nth last bar.

Lowest Lowest[N](price) Lowest price over a number of bars to be defined.

‍LowestBars LowestBars[N] Returns the candlestick offset of the last lowest value.

M

CODE SYNTAX FUNCTION

MACD MACD[S,L,Si](price) Moving Average Convergence Divergence (MACD).

MACDline MACDLine[S,L,Si](price) MACD line indicator.

MACDSignal MACDSignal[S,L,Si](price) MACD Signal line indicator.

MassIndex MassIndex[N] Mass Index Indicator applied over N bars.

MAX MAX(a,b) Mathematical Function "Maximum".

MedianPrice MedianPrice Average of the high and the low.

MIDDLE ANCHOR(MIDDLE,INDEX,YSHIFT) Anchoring in the middle of the chart.

MIN MIN(a,b) Mathematical Function "Minimum".

Minute Minute Represents the minute of each closing bar loaded in the chart.

Minutes TIMEFRAME(X Minutes) Sets the period to "X Minutes" for the following code calculations.

MOD a MOD b Mathematical Function "remainder of the division".

Momentum Momentum[N] Momentum indicator (close – close of the nth last bar).

MoneyFlow MoneyFlow[N](price) MoneyFlow indicator (result between -1 and 1).

MoneyFlowIndex MoneyFlowIndex[N] MoneyFlow Index indicator.

Monospaced DRAWTEXT(« text »,barindex,close,M
onospaced,Italic, 10)

Monospaced font applied to text.

Month Month[N] Represents the month of each closing bar loaded in the chart.

Months TIMEFRAME(X Months) Sets the period to "X Months" for the following code calculations.

NegativeVolumeIndex NegativeVolumeIndex[N] Negative Volume Index indicator.

NEXT See FOR/TO/NEXT Ending Instruction of FOR loops.

NOT NOT a Logical Operator NOT.

O

CODE SYNTAX FUNCTION

OBV OBV(price) On-Balance-Volume indicator.

ONCE ONCE VariableName = VariableValue Introduces a definition statement which will be processed only once.

Open Open[N] Open price of the current candlestick or of the nth previous candlestick.

OpenDay OpenDay[N] Opening day of the current candlestick or the nth previous candlestick.

OpenDayOfWeek OpenDay[N] Day of the week of the opening of the current candlestick or the nth previous
candlestick.

OpenHour OpenHour[N] Opening time of the current candlestick or the nth previous candlestick.

V 6.1.0 – 20251201 www.prorealtime.com 58 / 62

Glossary

CODE SYNTAX FUNCTION

OpenMinute OpenMInute[N] Opening minute of the current candlestick or the nth previous candlestick.

OpenMonth OpenMonth[N] Opening month of the current candlestick or the nth previous candlestick.

OpenSecond OpenSecond[N] Opening second of the current candlestick or the nth previous candlestick.

OpenTime OpenTime[N] Time (HHMMSS) of the opening of the current candlestick or the nth previous
candlestick.

OpenTimestamp OpenTimestamp[N] UNIX opening timestamp of the current candlestick or the nth previous
candlestick.

OpenWeek OpenWeek[N] Opening week of the current candlestick or the nth previous candlestick.

OpenYear OpenYear[N] Opening year of the current candlestick or the nth previous candlestick.

OR a OR b Logical OR Operator.

P - Q

CODE SYNTAX FUNCTION

PIPSIZE PIPSIZE Size of a pip (forex) PIPSIZE = POINTSIZE.

‍PIPVALUE PIPVALUE Value in €/$ of a pip (or point), PipValue=Pointvalue.

POINT RETURN close STYLE(POINT, Width) Apply the dot style on the returned value.

POINTSIZE POINTSIZE Size of a pip (or point): PIPSIZE = POINTSIZE.

POINTVALUE POINTVALUE Value in €/$ of a pip (or point), PipValue=Pointvalue.

PositiveVolumeIndex PositiveVolumeIndex(price) Positive Volume Index indicator.

POW POW(N,P) Returns the value of N at power P.

PriceOscillator PriceOscillator[S,L](price) Percentage Price oscillator.

PRINT PRINT x Displays the variable in its own window, useful for debugging.

PRTBANDSUP PRTBANDSUP Gives the value of the upper band of PRTBands.

PRTBANDSDOWN PRTBANDSDOWN Gives the value of the lower band of PRTBands.

PRTBANDSHORTTERM PRTBANDSSHORTTERM Gives the value of the short-term band of PRTBands.

PRTBANDMEDIUMTERM PRTBANDSMEDIUMTERM Gives the value of the long-term band of PRTBands.

PVT PVT(price) Price Volume Trend indicator.

R

CODE SYNTAX FUNCTION

R2 R2[N](price) R-Squared indicator (error rate of the linear regression on price).

RANDOM RANDOM(Min, Max) Generates a random integer between Min and Max bounds (included).

Range Range[N] Range (High – Low) of the current candle.

Repulse Repulse[N](price) Repulse indicator (measure the buyers and sellers force for each candlestick).

RepulseMM RepulseMM[N,Period,factor](price) Moving Average line of the Repulse indicator.

RETURN RETURN Result Instruction returning the result.

RIGHT ANCHOR(RIGHT,INDEX,YSHIFT) Anchor to the right of the chart.

ROC ROC[N](price) Price Rate of Change indicator.

RocnRoll RocnRoll(price) Designates the RocnRoll indicator based on the ROC indicator.

ROUND ROUND(a) Mathematical Function "Round a to the nearest whole number".

RSI RSI[N](price) Relative Strength Index indicator.

V 6.1.0 – 20251201 www.prorealtime.com 59 / 62

Glossary

S

CODE SYNTAX FUNCTION

SansSerif DRAWTEXT(« text »,barindex,close,S
ansSerif,Italic, 10)

SansSerif font applied to text.

SAR SAR[At,St,Lim] Parabolic SAR indicator.

SARatdmf SARatdmf[At,St,Lim](price) Smoothed Parabolic SAR indicator.

Second Second[n] Returns the second of the closing bar n periods before the current bar.

Seconds TIMEFRAME(X Seconds) Sets the period to "X Seconds" for further code calculations.

SenkouSpanA SenkouSpanA[T,K,S] Returns the SenkouSpanA value of the Ichimoku indicator.

SenkouSpanB SenkouSpanB[T,K,S] Returns the SenkouSpanB value of the Ichimoku indicator.

Serif DRAWTEXT(« text »,barindex,close,S
erif,Italic, 10)

Serif font applied to text.

SIN SIN(a) Mathematical Function "Sine" (‘a’ argument in degrees).

SGN SGN(a) Mathematical Function "Sign of" a (it is positive or negative).

SMI SMI[N,SS,DS](price) Stochastic Momentum Index indicator.

SmoothedRepulse SmoothedRepulse[N](price) Smoothed Repulse indicator.

SmoothedStochastic SmoothedStochastic[N,K](price) Smoothed Stochastic indicator.

SQUARE SQUARE(a) Mathematical Function "a Squared".

SQRT SQRT(a) Mathematical Function "Squared Root" of a.

Standard DRAWTEXT(« text »,barindex,close,S
erif,Standard, 10)

Standard style applied to text.

STD STD[N](price) Statistical Function "Standard Deviation".

STE STE[N](price) Statistical Function "Standard Error".

STYLE STYLE(dottedline, width) Applies the dottedline style type with a width on an object.

Stochastic Stochastic[N,K](price) %K line of the Stochastic indicator.

Stochasticd Stochasticd[N,K,D](price) %D line of the Stochastic indicator.

Summation Summation[N](price) Sums a certain price over the N last candlesticks.

Supertrend Supertrend[STF,N] Super Trend indicator.

T

CODE SYNTAX FUNCTION

TAN TAN(a) Mathematical Function "Tangent" of a (‘a’ argument in degrees).

TEMA TEMA[N](price) Triple Exponential Moving Average.

TenkanSen TenkanSen[T,K,S] Returns the TenkanSen value of the Ichimoku indicator.

THEN See IF/THEN/ELSE/ENDIF Instruction following the first condition of "IF".

Ticks TIMEFRAME(X Ticks) Sets the period to "X Ticks" for further code calculations. See Multi-period
instructions.

Ticksize Ticksize Minimum price variation of the instrument in the chart.

Time Time[N] Represents the closing time (HHMMSS) of each bar loaded in the chart.

TimeSeriesAverage TimeSeriesAverage[N](price) Temporal series moving average.

Timestamp Timestamp[N] UNIX date of the close of the nth previous candlestick.

TO See FOR/TO/NEXT Directional Instruction in the "FOR" loop.

Today Today Today's date (YYYYMMDD).

TOP ANCHOR(TOP,INDEX,YSHIFT) Anchor at the top of the chart.

V 6.1.0 – 20251201 www.prorealtime.com 60 / 62

Glossary

CODE SYNTAX FUNCTION

TOPLEFT ANCHOR(TOPLEFT,INDEX,YSHIFT) Anchor at the top left of the chart.

TOPRIGHT ANCHOR(TOPRIGHT,INDEX,YSHIFT) Anchor at the top right of the chart.

TotalPrice TotalPrice[N] (Close + Open + High + Low) / 4.

TR TR(price) True Range indicator.

TriangularAverage TriangularAverage[N](price) Triangular Moving Average.

TRIX TRIX[N](price) Triple Smoothed Exponential Moving Average.

TypicalPrice TypicalPrice[N] Represents the Typical Price (Average of the High, Low and Close).

U – V – W

CODE SYNTAX FUNCTION

Undefined a = Undefined Sets the value of a variable to undefined.

‍Unset unset($MyArray) Resets the data in the table.

VALUE ANCHOR(TOP, INDEX, VALUE) Sets the value of the object point for the vertical axis to be a price.

Variation Variation(price) Difference between the close of the last bar and the close of the current bar in %.

ViMinus ViMinus[N] Bottom band of the Vortex indicator.

ViPLus ViPlus[N] Top band of the Vortex indicator.

Volatility Volatility[S, L] Chaikin volatility.

Volume Volume[N] Volume indicator.

‍VolumeAdjustedAverage VolumeAdjustedAverage[N](Price) Volume Adjusted Moving Average.

VolumeOscillator VolumeOscillator[S,L] Volume Oscillator.

VolumeROC VolumeROC[N] Volume of the Price Rate Of Change.

Weeks TIMEFRAME(X Weeks) Sets the period to "X Weeks" for further code calculations.

WeightedAverage WeightedAverage[N](price) Weighted Moving Average indicator.

WeightedClose WeightedClose[N] Average of (2 * Close), (1 * High) and (1 * Low).

WEND See WHILE/DO/WEND Ending Instruction of WHILE loop.

WHILE/DO/WEND WHILE (condition) DO (action) WEND WHILE loop.

WilderAverage WilderAverage[N](price) Represents Wilder Moving Average.

Williams Williams[N](close) Returns the %R of Williams indicator.

WilliamsAccumDistr WilliamsAccumDistr(price) Accumulation/Distribution of Williams Indicator.

X – Y – Z

CODE SYNTAX FUNCTION

XOR a XOR b Logical Operator exclusive OR.

XSHIFT ANCHOR(TOP, XSHIFT,VALUE) Defines the value of the object point for the horizontal axis as an offset.

Year Year[N] Year of the closing bar n periods before the current bar.

Years TIMEFRAME(X Years) Set the period to "X Year(s)" for further code calculations.

Yesterday Yesterday[N] Date of the day preceding the bar n periods before the current bar.

YSHIFT ANCHOR(TOP, INDEX, YSHIFT) Defines the value of the object point for the vertical axis as an offset.

ZigZag ZigZag[Zr](price) Represents the Zig-Zag indicator introduced in the Elliott waves theory.

ZigZagPoint ZigZagPoint[Zp](price) Represents the Zig-Zag indicator in the Elliott waves theory calculated on Zp
points.

V 6.1.0 – 20251201 www.prorealtime.com 61 / 62

Glossary

Other

CODE FUNCTION CODE FUNCTION

+ Addition Operator. <> Difference Operator.

- Subtraction Operator. < Strict Inferiority Operator.

* Multiplication Operator. > Strict Superiority Operator.

/ Division Operator. <= Inferiority Operator.

= Equality Operator. >= Superiority Operator.

V 6.1.0 – 20251201 www.prorealtime.com 62 / 62

www.prorealtime.com

https://www.prorealtime.com/

	Introduction to ProBuilder
	Chapter I: Fundamentals
	Using ProBuilder
	Indicator creation quick tutorial
	Programming window keyboard shortcuts

	Specificities of ProBuilder programming language
	The Execution Model
	Variables

	Financial constants
	Price and volume constants adapted to the timeframe of the chart
	Daily price constants
	Temporal constants
	Constants derived from price
	The Undefined constant

	How to use pre-existing indicators?
	Adding customizable variables

	Chapter II: Math Functions and ProBuilder instructions
	Control Structures
	Conditional IF instruction
	One condition, one result (IF THEN ENDIF)
	One condition, two results (IF THEN ELSE ENDIF)
	Sequential IF conditions
	Multiple conditions (IF THEN ELSE ELSIF ENDIF)

	Iterative FOR Loop
	Ascending loop (FOR, TO, DO, NEXT)
	Descending loop (FOR, DOWNTO, DO, NEXT)

	Conditional WHILE Loop
	BREAK
	BREAK with WHILE
	BREAK with FOR

	CONTINUE
	CONTINUE with WHILE
	CONTINUE with FOR

	ONCE

	Mathematical Functions
	Common unary and binary Functions
	Common mathematical operators
	Charting comparison functions
	Summation functions
	Statistical functions

	Logical operators
	ProBuilder instructions
	RETURN
	Comments
	CustomClose
	CALCULATEONLASTBARS
	CALL
	AS
	COLOURED

	Drawing instructions
	Additional parameters

	Multi-period instructions
	List of available time frames

	Arrays (Data tables)
	PRINT

	Chapter III: Practical aspects
	Create a binary or ternary indicator: why and how ?

	Chapter IV: Exercises
	Candlestick patterns
	Indicators

	Glossary

