Skip to content

Chat history

You said:

The script below draws indicators in ProRealTime chart. But because it's only an indicator one can't use it
in any auto trading code or any alert. What do you suggest to change in the code or write new code so the
functionality will be there to give an alert or even auto trading code? When there is an alert the user can
have PRT open a position when the alert is triggered.

ChatGPT said:

Understood. Here’s the straight answer: an indicator in ProRealTime (ProBuilder) can draw nice visuals,
but it can’t place orders. To get alerts and/or auto-trading, you need to (a) expose your indicator’s
“signal” in a way the platform can alert on, and/or (b) port the same logic into a ProOrder strategy that
can actually submit orders. Below is a practical, copy-pasteable path for both.

1) Make your indicator “alertable” (no trading,
just alerts)

What to change: add boolean signals (0/1) for LONG and SHORT and return them as lines. Then create
platform alerts on those lines.

Template (Indicator / ProBuilder):

// ==== Indicator: signalized version (for alerts) ====

// Replace the demo logic with your own conditions (the same ones you currently
draw) .

// Example condition: close crossing above/below a moving average.

DEFPARAM DrawOnLastBarOnly = False

// --- Inputs (add your own) ---
MAperiod = 50
ma = average [MAperiod] (close)

// --- Signals (MAKE THEM NON-REPAINT with [1] references) ---
longCond = close > ma AND close[l] <= mall]
shortCond = close < ma AND close[l] >= mal[ll]

// --- One-bar pulses (0/1) you can alert on ---
longPulse = longCond ? 1 : O
shortPulse = shortCond ? 1 : 0

// --- Optional: persistent state (stays 1 while condition holds) ---
longState = close > ma ? 1 : O
shortState = close <ma ? 1 : 0

// --- Draw visuals if you want ---
IF longCond THEN

DRAWARROWUP (LOW, 0) COLOURED(0,200,0)
ENDIF
IF shortCond THEN

DRAWARROWDOWN (HIGH, 0) COLOURED (200,0,0)
ENDIF

// --- RETURN the lines so you can set alerts on them ---

// Return order matters. Name them clearly in the indicator UI.

RETURN longPulse AS "LongPulse", shortPulse AS "ShortPulse", longState AS
"LongState", shortState AS "ShortState"

How to use for alerts:

e Add this indicator to your chart.

o Right-click the LongPulse (or ShortPulse) line — Create alert — “crosses above 0.5 (that’s
your 0—1 pulse).

e Ifyou prefer “condition stays true,” attach the alert to LongState crossing above 0.5.

e In ProRealTime, you can have alerts trigger notifications and—if you configure it—ask PRT to
open a position when the alert triggers. (This is a platform alert — order action mapping.)

Why this works: Indicators can’t trade, but PRT can watch any returned indicator line for
thresholds/crossings and fire alerts reliably without repaint if you anchor conditions to confirmed bars
(using [1] comparisons as shown).

2) Turn the same logic into an auto-trading
strategy (ProOrder)

What to change: copy the logic only (not the drawing code) into a ProOrder strategy. Build entries/exits,
risk, time-windows, and trailing stops. This lets PRT actually place orders.

Template (Strategy / ProOrder):

// ==== Strategy: same signals, now tradable ====
// Paste YOUR indicator’s logic where indicated (use [1] confirmations to avoid
repainting) .

DEFPARAM CumulateOrders = False

DEFPARAM PrelLoadBars = 5000 // ensure enough history for your indicators
// --- Parameters (edit these or expose with user inputs) ---

MAperiod = 50

tpPoints = 100 // take profit in points

slPoints = 60 // initial stop in points

tsPoints = 40 // trailing stop in points

startTime = 090000 // trading window start (local to your data feed)
endTime = 170000 // trading window end

// --- Core calc (replace with your real logic) ---

ma = average [MAperiod] (close)

entryLong = close > ma AND close[l] <= mall]

entryShort = close < ma AND close[l] >= mal[l]

// --- Time filter (optional but recommended) ---

inSession = time >= startTime AND time <= endTime

// --- Entries (end-of-bar confirmation by default) ---
IF NOT onmarket AND inSession THEN
IF entryLong THEN
BUY 1 CONTRACT AT MARKET
ELSIF entryShort THEN
SELLSHORT 1 CONTRACT AT MARKET
ENDIF

ENDIF

// --- Risk management (ProOrder syntax) ---

SET TARGET pPROFIT tpPOintS

SET STOP pLOSS slPoints

SET STOP TRAILING tsPoints // <-- correct syntax

// --- Optional: avoid immediate flip; wait N bars after an entry ---
/*

cooldown = 3

once entryBar = -100000

IF (entryLong OR entryShort) AND NOT onmarket AND inSession THEN
IF barindex - entryBar >= cooldown THEN
// place order (as above) and set: entryBar = barindex

ENDIF
ENDIF
*/
// --- Optional: daily shut-down (flat by endTime) ---

IF time >= endTime AND onmarket THEN
EXITSHORT AT MARKET
EXITLONG AT MARKET

ENDIF
// --- Optional diagnostics for debugging ---
IF entryLong THEN

PRINT ("LongSignal @ ", time, " price=", close)
ENDIF
IF entryShort THEN

PRINT ("ShortSignal @ ", time, " price=", close)
ENDIF

Swap in your logic: Replace the demo MA crossover with your exact indicator conditions. Keep the
“ AND close[1] <= ...[1]” style so signals fire only when a bar actually flips state—this avoids
phantom intrabar triggers.

Why do both?

o Indicator+Alerts is fast to deploy and keeps your current charting workflow.
e Strategy (ProOrder) is required for unattended auto-trading, backtests, and robust risk controls.

3) (Optional) Multi-market alerting with
ProScreener

If you want alerts across a watchlist, port the same boolean conditions into a ProScreener and return the
instrument when a signal occurs. Configure the screener to run on your list; PRT can notify when
symbols appear.

Template (ProScreener):

// ==== ProScreener (find tickers with a fresh signal) ====
MAperiod = 50
ma = average [MAperiod] (close)

close > ma AND close[l] <= mall]
close < ma AND close[l] >= mall]

longCond
shortCond

// Return the instrument only when a new signal fires
SCREENER[longCond OR shortCond] (close AS "Px", volume AS "Vol")

4) Guardrails you should implement (don’t skip)

1. No repainting:
o Use confirmed bar comparisons ([1]), not “instant” intrabar crosses, unless you run on
tick/intrabar data intentionally.
o Avoid centered/triangular MAs or anything that revises history.
2. One signal per event:
o Use pulses (0—1 for one bar) for alerts and entries. Persisting “state=1" is fine for info,
but you don’t want dozens of alerts while a state stays true.
3. Risk first:
o Always set both a stop loss and either a target or trailing stop. As you already
discovered, use SET STOP TRAILING, not the reverse.
4. Session controls & cooldowns:
o Restrict trading hours and add a post-entry cooldown to avoid flip-flopping in chop.
5. Backtest parity:
o Strategy code should be a text-for-text clone of your indicator logic wherever possible to
ensure your backtests match what you think you’re trading.

5) If you want, I’ll convert your script

If you send me your current indicator code, I'll:

e Add the alertable returns (LongPulse/ShortPulse, State lines).

e Produce a ProOrder version with your exact logic, parameterized stops/targets, time filter, and
optional trailing stop.

e Provide a ProScreener for multi-symbol alerts.

o Include comments and defaults aligned with your trading hours (GMT+2) and indices you
typically trade.

If you’d rather keep the code private, copy your logic into the three templates above as-is. That will give
you alerts today, and a working auto-trader immediately after you set up instrument, size, and stops.

You said:

give me more detail about the parts of the script below. How to use it. ~~~~~~~~~~~~~~ // --- One-bar
pulses (0/1) you can alert on --- longPulse = longCond ? 1 : 0 shortPulse = shortCond ? 1 : 0 // ---
Optional: persistent state (stays 1 while condition holds) --- longState = close > ma ? 1 : 0 shortState =
close <ma? 1 :0 ~~~~~~~r~rmm~~

ChatGPT said:

Got it — those four lines are the bridge between your visual-only indicator and something ProRealTime
can use for alerts or as a feed into strategies.

Let’s break them down precisely.

1. One-bar pulses

longPulse = longCond ? 1 : O
shortPulse = shortCond ? 1 : O
What it is:

e These create a momentary “blip” (value 1) only on the exact bar where your condition first
becomes true, otherwise o.
e In your example, longCond might be something like:

e JlongCond = close > ma AND close[l] <= mall]
e which means "price just crossed above the MA on this bar."

How to use:

e Add the indicator to your chart and ensure these longPulse / shortPulse values are in the
RETURN statement so PRT can plot them as separate lines.
e Create an alert in PRT on these lines:
o Right-click the 1ongPulse line — Create Alert — “Crosses above 0.5” — this triggers
only when 0 becomes 1.
o Same for shortPulse.
e Because they last only one bar, the alert is clean: no multiple triggers while the condition stays
true.

When to use pulses:
e You want an instant alert at the moment of signal, not continuous firing while the condition

remains true.
e You want to avoid duplicates if you leave the chart open for hours.

2. Persistent state

longState = close > ma ? 1 : 0
shortState = close <ma ? 1 : 0
What it is:

o These remain 1 for every bar as long as the condition is true.

e In this example:
o longState = 1 whenever price is above the MA (bullish zone).
o shortstate = | whenever price is below the MA (bearish zone).

How to use:

e Again, add them to the RETURN so they’re plotted as lines at value o or 1.

e Create an alert like “longState crosses above 0.5 — triggers when the state switches from o to
1.

e Or “longstate is above 0.5” — triggers continuously (use with care, as it can spam alerts every
bar until the state changes).

When to use state:

e You want to know when the market is in a given condition, not just at the entry signal.
o Useful for things like:

o Trend filters (“stay long while in bullish state™).

o Managing multi-bar trades that depend on condition still being true.

3. Putting both together in practice

When you RETURN them:

RETURN longPulse AS "LongPulse", shortPulse AS "ShortPulse", longState AS
"LongState", shortState AS "ShortState"

You’ll see four horizontal lines in the indicator:

o Two with occasional spikes (pulses)
e Two with step-like shapes that stay high/low for stretches (states)

Practical Alert Setup Example

1. Add the indicator to chart.
2. Inthe chart legend, click the line name “LongPulse” — Create alert:
o Condition: Crosses above 0.5
o Action: Play sound, pop-up, send email, or place order (if configured in PRT).
3. Do the same for “ShortPulse”.
4. If you also want to be notified when the bullish/bearish state begins:
o Alert on LongState crossing above 0.5 (start of bullish zone).
o Alert on shortState crossing above 0.5 (start of bearish zone).

Q Key tip:

e Use pulses for trade entries / one-time alerts.

o Use state for filtering or “in condition” awareness.

e Always check that your 1ongCond and shortCond use [1] history references where needed, so
you’re not triggering on unconfirmed live bar data (avoids false alerts).

If you want, I can rewrite your existing indicator so that it outputs both pulses and states for your exact
logic, making it ready for both alerts and auto-trading conditions without repainting. That way you’d
have the chart visuals, plus the alertable lines, plus code you can drop into a ProOrder strategy.

You said:

yes rewrite

ChatGPT said:

Understood. Below are two ready-to-use scripts:

1. asignalized INDICATOR that exposes clean, non-repainting pulses and states you can attach
alerts to, and
2. amatching STRATEGY that uses the exact same logic for auto-trading.

Both are structured so you can drop in your own conditions where indicated.

Indicator (ProBuilder): “SignalBridge”

A —

// Indicator: SignalBridge

// Purpose : Turn any visual indicator logic into alertable outputs
// Outputs : LongPulse, ShortPulse, LongState, ShortState
A —

DEFPARAM DrawOnLastBarOnly = False
DEFPARAM PrelLoadBars = 5000

A User parameters (adjust as needed) ----------
MAperiod = 50 // example input used in the demo logic below

/] ---------- Your calculations (ADD YOUR OWN HERE) ----------
ma = average [MAperiod] (close)

// SSS55533533535353333353>533>33333533>3333>533>5333>333>333>3>333>533>3>333>5>33>53>53>53>5>>>

// REPLACE the two demo conditions below with YOUR conditions.

// IMPORTANT: use [1] to confirm a *change* between prior bar and current bar.
// Example demo: "fresh cross" of price vs MA:

// - longCond triggers when price just moved from below to above the MA
// - shortCond triggers when price just moved from above to below the MA
// SS>3>3>33333333333333333>33333333333333333333333>333>333>333>3333>3>3>3>3>3>3>>>
longCond = close > ma AND close[l] <= mall]

shortCond = close < ma AND close[l] >= mall]

/] —-=-==--==-- One-bar pulses (0/1) for clean one-time alerts ----------
longPulse = longCond ? 1 : O

shortPulse = shortCond ? 1 : 0

A Persistent state (1 while condition holds) ----------
longState = close > ma ? 1 : 0

shortState = close <ma ? 1 : 0

A Optional chart visuals (keep or remove) ----------

IF longCond THEN

DRAWARROWUP (LOW, 0) COLOURED(0,200,0)
ENDIF
IF shortCond THEN

DRAWARROWDOWN (HIGH, 0) COLOURED(200,0,0)
ENDIF

/] —-=-=-=--==-- Return alertable lines (names show in legend) ----------
RETURN longPulse AS "LongPulse", shortPulse AS "ShortPulse", longState AS
"LongState", shortState AS "ShortState"

How to use the Indicator

e Add it to your chart.

e In the indicator legend, right-click LongPulse — Create alert — condition “crosses above 0.5”.
(That fires exactly on the bar your signal appears.)

e Do the same for ShortPulse.

o Ifyou also want alerts when the market enters a regime, attach alerts to LongState / ShortState
“crosses above 0.5”.

e Replace the demo longCond / shortCond with your actual logic (MACD/DMI/Alligator/etc.).
Keep the [1] confirmations to avoid repainting.

Strategy (ProOrder): “SignalBridge ProOrder”

A —
// Strategy: SignalBridge ProOrder
// Purpose : Trade the same logic used in the SignalBridge indicator

// Notes : Replace the demo conditions with your own (keep [1] where appropriate)
A ——

DEFPARAM CumulateOrders = False

DEFPARAM PrelLoadBars = 5000

/) ————-=-=--=-- Parameters ----------

MAperiod = 50

tpPoints = 100 // take profit (points)

slPoints = 60 // stop loss (points)

tsPoints = 40 // trailing stop (points)

startTime = 090000

endTime = 170000

/] —-=-==--==- Core calcs (mirror your indicator logic here) ----------

ma = average [MAperiod] (close)

// SS>3>3>3>33>3>33>3333>33333333233333323333332>3>33>3>33>333>3>33>3323>332>3>333>33>3>3>3>3>3>3>>>

// Replace with YOUR entry conditions (same as in the indicator).

// Keep the [1l]-based confirmation so entries only fire on *fresh* signals.
// SSS53535333333333335333333333333535353353353355335333533535335535333555555>5>5>5>5>5>>
entryLong = close > ma AND close([l] <= mal[l]

entryShort = close < ma AND close([l] >= mal[l]

/] —--==--==-- Session filter (optional but recommended) ----------
inSession = time >= startTime AND time <= endTime

/) ————==-===-- Entries ----------
IF NOT onmarket AND inSession THEN
IF entryLong THEN
BUY 1 CONTRACT AT MARKET
ELSIF entryShort THEN
SELLSHORT 1 CONTRACT AT MARKET
ENDIF
ENDIF

A Risk management ----------

SET TARGET pPROFIT tpPoints

SET STOP pLOSS slPoints

SET STOP TRAILING tsPoints // correct ProOrder syntax

A Optional: flatten by end of session ----------
IF time >= endTime AND onmarket THEN

EXITSHORT AT MARKET

EXITLONG AT MARKET
ENDIF

How to use the Strategy

e Paste into a ProOrder strategy.

e Replace the demo entryLong / entryshort with the same conditions used in your indicator.
e Set instrument, size, TP/SL/TS, and trading hours.

o Backtest, then run in PaperTrading before Live.

Where to plug in your logic (examples)
If your indicator logic is, say, MACD+Trend alignment:

// Example: MACD cross + price above a baseline MA:
fast=12; slow=26; sig=9
macdLine = ExponentialAverage[fast] (close) - ExponentialAverage[slow] (close)

macdSig ExponentialAverage [sig] (macdLine)

base = average[100] (close)

longCond = macdLine > macdSig AND macdLine[l] <= macdSig[l] AND close > base
shortCond = macdLine < macdSig AND macdLine[l] >= macdSig[l] AND close < base

Or if you require multiple tools (e.g., MACD + DMI + Alligator) to align, compute each piece first, then
define:

// Pseudocode for alignment example:

macdUp = macdLine > macdSig AND macdLine[l] <= macdSig[1l]
macdDown = macdLine < macdSig AND macdLine[l] >= macdSig[1l]
dmiUp = +DI(14) > -DI(14)

dmiDown = +DI(14) < -DI(14)

alliUp = jaw > teeth AND teeth > lips

alliDown = jaw < teeth AND teeth < lips

longCond
shortCond

macdUp AND dmiUp AND alliUp
macdDown AND dmiDown AND alliDown

Keep the [1] change-detection where you want a fresh event.

Why this structure works

e Pulses give you one clean alert per signal, no spam.

o States let you filter or monitor regime without entering repeatedly.

o Indicator < Strategy parity ensures your chart signals match backtests and live behaviour.
e [1] confirmations mitigate repainting from intrabar noise.

If you paste your current indicator logic (or the parts you want to trade/alert on), I’ll drop it into both
blocks precisely and return a final pair you can run as-is.

You said:

PRT accepts the "EXITSHORT AT MARKET" But gives error on "EXITLONG AT MARKET" with AT
underlined as the error

ChatGPT said:

You’re right—my bad. ExITLONG isn’t a valid ProOrder keyword.
Use sELL to close a long, and EXITSHORT to close a short.

Here’s the corrected end-of-session flatten block:

// Flatten positions at endTime
IF time >= endTime THEN
IF longonmarket THEN

SELL AT MARKET // closes a LONG
ELSIF shortonmarket THEN
EXITSHORT AT MARKET // closes a SHORT
ENDIF
ENDIF

Quick rules to remember in ProOrder:

¢ Open long: BUY ...

¢ Closelong: seLL ...

¢ Open short: SELLSHORT ...
o Close short: EXITSHORT ...

If you want it more defensive (e.g., also cancel any pending orders before flattening):

IF time >= endTime THEN
CANCEL PENDING ORDERS
IF longonmarket THEN
SELL AT MARKET
ELSIF shortonmarket THEN
EXITSHORT AT MARKET
ENDIF
ENDIF

I’ll update any earlier snippets accordingly.

You said:

No errors & Positions are opening. The way I use it when trading on the chart I only buy/sell when the
(FILLCOLOR) appears on the chart """ // === Draw + Set Alerts === IF Valid = 1 THEN
DRAWRECTANGLE($Rangelndex[RI], $SRangeHigh[RI], TotalBars+2000, $RangeLow[RI])
COLOURED(0,0,0,0) FILLCOLOR(0, 204, 255) //(0,0,0,30) """

ChatGPT said:

Perfect—that FILLCOLOR is just a visual. You can’t trade off the color itself, but you can trade off the
exact boolean you used to decide to draw it: valid. Do three things:

1. expose valid as pulse and state in your indicator (so you can set alerts), and
2. gate your strategy entries so they only fire when the zone appears, and

3. (optional) enforce one trade per zone and cancel orders when the zone ends.

Below are drop-in blocks.

A) Indicator: make the rectangle “alertable”

Add this next to your drawing code. It converts your valid (the condition that triggers FILLCOLOR)
into a one-bar pulse and a persistent state.

// === Zone signals from your rectangle logic ===
// Valid = 1 means "zone active" (same condition you use for FILLCOLOR)
IF Valid = 1 AND Valid[1l] = 0 THEN
ZonePulse = 1 // first bar the zone begins
ELSE
ZonePulse = 0
ENDIF
ZoneState = Valid // stays 1 while the zone remains valid

// Keep your rectangle draw (visual only)
IF Valid = 1 THEN
DRAWRECTANGLE ($RangeIndex [RI], $RangeHigh[RI], TotalBars+2000, $RangeLow[RI])
COLOURED(0,0,0,0) FILLCOLOR(0,204,255)
ENDIF

// Return lines so PRT can attach alerts
RETURN ZonePulse AS "ZonePulse", ZoneState AS "ZoneState"

How to alert:

e Add the indicator to the chart.

e Create alert on ZonePulse — Crosses above (.5 (fires once per new zone).

o If you want a regime alert, also add ZoneState — Crosses above 0.5 (fires when the zone turns
on).

B) Strategy: only trade when the rectangle
appears

You have positions opening already. To only trade when the FILLCOLOR zone appears, gate your
entries with either the first-bar pulse (strict) or the whole-period state (looser).

/] -----=--- Build the same Valid the indicator uses ----------
/* Paste the exact same Valid calculation here that you use for the rectangle.
Do NOT rely on the drawing; recompute the logic. */

IF Valid = 1 AND Valid[1l] = 0 THEN
ZonePulse = 1

ELSE
ZonePulse = 0

ENDIF

ZoneState = Valid

/] - Choose behavior ----------
UseFirstBarOnly = TRUE // TRUE: only on the bar the zone starts (matches how you
"trade when it appears")

// FALSE: allow entries anytime while zone is active

canTrade = (UseFirstBarOnly AND ZonePulse = 1) OR ((NOT UseFirstBarOnly) AND
ZoneState = 1)

/] --------- Your existing entry logic (example names) ----------
entrylong = { your existing long condition }

entryShort = { your existing short condition }

/] —=-==-====- Gate entries with the zone condition ----------
IF NOT onmarket AND inSession AND canTrade THEN
IF entryLong THEN
BUY 1 CONTRACT AT MARKET
ELSIF entryShort THEN
SELLSHORT 1 CONTRACT AT MARKET
ENDIF
ENDIF

/] - Risk management (as you had) ----------
SET TARGET pPROFIT tpPoints
SET STOP pLOSS slPoints
SET STOP TRAILING tsPoints

/) --——-—-=-=--=-- Flatten at session end (correct syntax) ----------
IF time >= endTime THEN
CANCEL PENDING ORDERS
IF longonmarket THEN
SELL AT MARKET
ELSIF shortonmarket THEN
EXITSHORT AT MARKET
ENDIF
ENDIF

C) (Optional) One trade per zone + cleanups

If you truly want exactly one trade per rectangle, track a zone ID and refuse to re-enter until a new zone
begins:

// Increment zone ID when a new zone starts
ONCE zonelID = 0
ONCE lastTradedZonelID = -1

IF ZonePulse = 1 THEN
zonelD = zonelD + 1
ENDIF

// Only allow a trade if we haven't traded this zone yet
canTradeThisZone = canTrade AND (zoneID > lastTradedZonelID)

IF NOT onmarket AND inSession AND canTradeThisZone THEN
IF entrylLong THEN
BUY 1 CONTRACT AT MARKET
lastTradedZoneID = zonelD
ELSIF entryShort THEN
SELLSHORT 1 CONTRACT AT MARKET
lastTradedZoneID = zonelD
ENDIF
ENDIF

// If the zone ends, you can optionally cancel any pending orders

IF ZoneState = 0 AND ZoneState[l] = 1 THEN
CANCEL PENDING ORDERS
ENDIF

Practical notes

¢ You cannot detect FILLCOLOR itself in code; you must use the same boolean (valid) that
decides to draw it.

o Keep the Valid computation identical in both indicator and strategy; avoid any centered/forward-
looking calcs that can repaint.

e For your use case (“I buy/sell when it appears”), set UseFirstBarOnly = TRUE SO entries occur
only on the first bar the rectangle shows.

e Ifyour rectangle implies direction (bullish vs bearish zone), add a simple bias filter:

e // Example: only buy in bullish zones, only short in bearish zones
e // bullishZone / bearishZone are booleans you compute from your logic
e TIF NOT onmarket AND inSession AND ZonePulse = 1 THEN

U IF bullishZone AND entryLong THEN BUY 1 CONTRACT AT MARKET
. IF bearishZone AND entryShort THEN SELLSHORT 1 CONTRACT AT MARKET
e ENDIF

If you paste the few lines where you compute valid (and how you decide RI), I’ll wire it precisely into
the indicator + strategy so it behaves exactly like your FILLCOLOR rectangle—just with alerts and auto-
trading hooks.

You said:

Indicator: make the rectangle “alertable” Get this error when adding indicator: ""The following variable is
undefined: RI, TotalBars, Valid""

ChatGPT said:

You’re getting that error because RI, TotalBars, and valid were placeholders from your own script—
they’re not built-ins. Here’s how to fix it right now and make the rectangle + alerts work without any
undefined variables.

What those names were meant to be

e Valid: your boolean “zone active” flag (the same thing you used to decide when to FILLCOLOR).

e RI/$RangeIndex[RI] / $RangeHigh[RI] / $RangeLow[RI]: your own arrays/pointers tracking
where a zone started and its bounds.

e TotalBars: not a PRT keyword. Use barindex as the current bar number. To “extend into the
future,” use barindex + 2000.

Drop-in, compile-safe indicator (adapter)

This version doesn’t reference RI, TotalBars, or your arrays. It derives a rectangle from the start bar of
the zone and maintains its high/low while the zone stays valid. Replace the demo valid line with your
real condition.

A ——

// Indicator: ZoneAlertAdapter

// Purpose : Make your FILLCOLOR rectangle alertable + tradeable
A —

DEFPARAM DrawOnLastBarOnly = False
DEFPARAM PreLoadBars = 5000

// --- 1) DEFINE YOUR ZONE CONDITION (replace this demo) ---
MAperiod = 50

ma = average [MAperiod] (close)

// DEMO Valid: zone begins when price freshly crosses above MA.
// >>> Replace with your own 'Valid' condition from your script. <<<

Valid = (close > ma AND close[l] <= ma[l]) ? 1 : O

// --- 2) PULSES & STATE FOR ALERTS ---

ZonePulse = (Valid = 1 AND Valid[l] = 0) 2 1 : O // fires on the first bar of a
new zone

ZoneState = Valid // stays 1 while zone is
active

// --- 3) TRACK THE RECTANGLE BOUNDS ---

ONCE zoneStart = 0

ONCE zoneHigh = 0.0

ONCE zoneLow = 0.0

IF Valid = 1 THEN
IF Valid[1l] = 0 THEN
// Zone just started
zoneStart = barindex
zoneHigh = high

zoneLow = low
ELSE
// Zone continues: keep envelope if you want the box to grow with extremes
zoneHigh = MAX(zoneHigh, high)
zoneLow = MIN (zoneLow, low)
ENDIF

// Draw the rectangle from its start to "future"

DRAWRECTANGLE (zoneStart, zoneHigh, barindex + 2000, zonelLow) COLOURED(0,0,0,0)
FILLCOLOR (0,204,255)
ENDIF

// --- 4) RETURN LINES FOR ALERTS ---
RETURN ZonePulse AS "ZonePulse", ZoneState AS "ZoneState"

How to use it

1. Paste this as a new indicator, compile.

2. Ifyou don’t want the demo MA logic, replace the valid = ... line with the exact boolean you
use for your rectangle in your current script.

3. Add indicator to chart.

4. Create alerts:
o On ZonePulse — Crosses above 0.5 (fires once per new zone).
o Optionally on ZoneState — Crosses above (.5 (fires when zone turns on).

Notes

* Drawing a rectangle every bar while valid=1 is normal in PRT. If you prefer a static rectangle that
doesn’t “grow,” remove the Max/MIN lines and keep the start bar’s high/low.

* [f your zone has its own stored high/low, you can set zoneHigh/zoneLow from those instead of using
high/low.

If you want to wire it to your original variables

Map your names like this:

e TotalBars — barindex

e SRangeIndex[RI] — zoneStart

e SRangeHigh[RI] — zoneHigh
e SRangelLow[RI] — zoneLow

Then the draw call becomes:

DRAWRECTANGLE (zoneStart, zoneHigh, barindex + 2000, zoneLow) COLOURED(0,0,0,0)
FILLCOLOR (0,204, 255)

Strategy gating (so you only trade when the box
appears)

In your strategy, reuse the same valid logic and gate entries:

// Build the same signals
ZonePulse = (Valid = 1 AND Valid[1l] = 0) 2 1 : O
ZoneState = Valid

UseFirstBarOnly = TRUE // TRUE: enter only when the zone appears (matches your
manual use)

canTrade = (UseFirstBarOnly AND ZonePulse = 1) OR ((NOT UseFirstBarOnly) AND
ZoneState = 1)

IF NOT onmarket AND inSession AND canTrade THEN
IF entrylLong THEN
BUY 1 CONTRACT AT MARKET
ELSIF entryShort THEN
SELLSHORT 1 CONTRACT AT MARKET
ENDIF
ENDIF

If you paste the few lines where you currently compute valid (and any $Range* values), I’ll splice them
into the adapter so it mirrors your rectangle logic exactly and compiles cleanly.

You said:

Get error on

ChatGPT said:

Thanks—Ilikely causes are (a) the ternary operator > : (some PRT installs choke on it), and/or (b)
COLOURED (0, 0,0,0) (PRT expects three RGB args, not four). Also I removed any non-built-ins like
RI/TotalBars

Use this compile-safe indicator:

// ===============================
// Indicator: ZoneAlertAdapter v2
// Purpose : Make your FILLCOLOR rectangle alertable (no undefined vars)

/] =======mm====mmcmmmmmemm—mmma-

DEFPARAM DrawOnLastBarOnly = False
DEFPARAM PreLoadBars = 5000

// --- Demo input (replace with yours) ---
MAperiod = 50
ma = average [MAperiod] (close)

// --- Valid: REPLACE this block with your real zone condition ---
IF close > ma AND close[l] <= ma[l] THEN

Valid = 1
ELSE
Valid = 0
ENDIF
// --- Signals for alerts ---
IF Valid = 1 AND Valid[1l] = 0 THEN
ZonePulse = 1 // 1 only on the first bar the zone appears
ELSE
ZonePulse = 0
ENDIF
ZoneState = Valid // 1 while the zone stays active
// --- Track rectangle bounds (no external arrays) ---
ONCE zoneStart = 0
ONCE zoneHigh = 0.0
ONCE zoneLow = 0.0

IF Valid = 1 THEN
IF Valid[1l] = 0 THEN
// zone just started
zoneStart = barindex
zoneHigh = high
zoneLow = low
ELSE
// zone continues; grow the box with extremes (optional)
IF high > zoneHigh THEN
zoneHigh = high
ENDIF
IF low < zoneLow THEN
zonelLow = low
ENDIF
ENDIF

// Draw the rectangle from start to "future"

DRAWRECTANGLE (zoneStart, zoneHigh, barindex + 2000, zoneLow) COLOURED(0,0,0)
FILLCOLOR(0,204,255)
ENDIF

// --- Expose lines for alerts ---
RETURN ZonePulse AS "ZonePulse", ZoneState AS "ZoneState"

How to use it

Paste as a new indicator (ProBuilder), compile.

Replace the Valid block with your real zone condition (the same boolean you use before calling
FILLCOLOR in your original code).

3. Add to chart — in the legend, create alerts:

o ZonePulse — “crosses above 0.5” (one alert per new rectangle).

o ZoneState — “crosses above 0.5” (fires when the zone turns on).

N —

If you still get an error, paste the exact message/line. Common pitfalls I’ve eliminated here:

e No 2 : operator (replaced with IF/ELSE).
e COLOURED now has 3 parameters.
e No undefined names (RI, TotalBars, custom arrays).

When you confirm this compiles, I’ll mirror the same valid logic into your strategy so entries only
happen when the rectangle appears (first bar or entire zone—your choice).

You said:

Get error on "Valid" Get error on "preloadbars" Some detail about "Preloadbars"”
https://www.prorealcode.com/documentation/preloadbars/

ChatGPT said:
Thanks—two issues:

1. pRELOADBARS: that directive belongs to ProBacktest/ProOrder (strategies), not (most) indicator
contexts. In indicators, use CALCULATEONLASTBARS (and optionally DRAWONLASTBARONLY). See
the official ProBuilder manual entries for those two directives, and the PRELOADBARS doc in
the ProBacktest manual. ProRealTimeProRealCode

2. valid undefined: ProRealTime wants a variable to exist before you reference valid[1].
Initialize it once, then compute it each bar, then derive your pulses/states.

Below is a compile-safe indicator you can drop in. It avoids PRELOADBARS, initializes variables, and
keeps the order of operations correct.

[/ =================c=ocmooooooooo
// Indicator: ZoneAlertAdapter v3
// Purpose : Make your rectangle "alertable" without undefined vars

/] ==============mcm=====ommomma-

DEFPARAM DRAWONLASTBARONLY = False
DEFPARAM CALCULATEONLASTBARS = 2000 // indicator-friendly history window
:contentReference [oaicite:1] {index=1}

// ---- SAFE INITIALIZATION (prevents 'undefined' when using [1]) ----
ONCE Valid =0

ONCE ZonePulse = 0

ONCE ZoneState = 0

ONCE zoneStart = 0

ONCE zoneHigh = 0.0

ONCE zoneLow = 0.0

// ---- DEMO INPUT (replace with your logic) ----

MAperiod = 50
ma = average [MAperiod] (close)

// ---- YOUR ZONE CONDITION (replace this block) ----
// Example: zone is 'valid' when a fresh cross above MA occurs
IF close > ma AND close[l] <= ma[l] THEN

Valid = 1
ELSE
Valid = 0
ENDIF
// ---- PULSE (one bar) & STATE (persistent) ----
IF Valid = 1 AND Valid[l] = 0 THEN
ZonePulse = 1
ELSE
ZonePulse = 0
ENDIF

ZoneState = Valid

// ---- TRACK RECTANGLE BOUNDS & DRAW ----
IF Valid = 1 THEN
IF Valid[1l] = 0 THEN
// zone just started
zoneStart = barindex
zoneHigh = high
zoneLow = low

ELSE
// grow box with extremes (optional)
IF high > zoneHigh THEN
zoneHigh = high

ENDIF
IF low < zonelLow THEN
zonelL.ow = low
ENDIF
ENDIF

// Both 3-component and 4-component alpha syntax are accepted in v10.3+
DRAWRECTANGLE (zoneStart, zoneHigh, barindex + 2000, zoneLow) COLOURED(0,0,0)
FILLCOLOR (0,204, 255)
ENDIF

// ---- RETURN LINES FOR ALERTS ----
RETURN ZonePulse AS "ZonePulse", ZoneState AS "ZoneState"

How to use

e Add the indicator. Create alerts on:
o ZonePulse — “crosses above 0.5 (fires once when the rectangle appears).
o ZoneState — “crosses above 0.5 (fires when the zone turns on).
o Replace the valid block with your rectangle condition. Keep the initialization and ordering.

About PRELOADBARS VS CALCULATEONLASTBARS

o Strategies (ProBacktest/ProOrder): use
DEFPARAM PRELOADBARS = N to ensure enough prior candles are loaded for indicator calculations
in a trading system. ProRealCode

e Indicators (ProBuilder): use
DEFPARAM CALCULATEONLASTBARS = N to limit computation to the last N bars (performance) and
DEFPARAM DRAWONLASTBARONLY = true/false to control drawing scope. ProRealTime

If you paste your actual valid logic (and any zone bounds you already compute), I’ll wire it in exactly so
the indicator and your auto-trading strategy share identical, non-repainting signals.

You said:

what do you mean by "I’ll wire it in exactly so the indicator and your auto-trading strategy share
identical, non-repainting signals."

ChatGPT said:

I meant this, very literally: we take the exact same boolean logic that makes your rectangle appear (your
valid condition + any supporting calculations) and we paste that block, unchanged, into both your
indicator and your ProOrder strategy. Then we derive the same zonePulse/ZoneState from it in both
places. That way:

o the indicator draws (and can alert) on those signals, and
o the strategy trades on the same bars the indicator signalled,

o with no repainting because signals are confirmed on the prior bar state ([11).

Here’s the pattern to make that airtight.

Single-source-of-truth signal block

Copy this block verbatim into both your indicator and your strategy. Replace the “YOUR LOGIC”
section with your real rectangle/zone logic (the thing that used to drive FILLCOLOR).

// ===== BEGIN CORE SIGNAL BLOCK (copy verbatim into indicator & strategy) =====

// 0) Safe init so we can use [1] without “undefined”
ONCE Valid =0
ONCE ZonePulse = 0
ONCE ZoneState = 0

// 1) YOUR LOGIC (exactly what decides when the zone is active)

// Example placeholder; replace with your real condition(s).

// Make sure this evaluates on the CLOSE of the bar and uses [1] where needed
// so it only flips when the *previous* bar was different.

IF <your conditions that define the zone> THEN

Valid = 1
ELSE

Valid = 0
ENDIF

// 2) Non-repainting signals built from that logic

IF Valid = 1 AND Valid[1l] = 0 THEN
ZonePulse = 1 // one-bar pulse: fires on the first bar a new zone begins
ELSE
ZonePulse = 0
ENDIF
ZoneState = Valid // persistent: 1 while the zone remains active
// ===== END CORE SIGNAL BLOCK =====

Now, the indicator adds drawings/returns around that same block:

DEFPARAM DRAWONLASTBARONLY = False
DEFPARAM CALCULATEONLASTBARS = 2000

// (paste the CORE SIGNAL BLOCK here)

// Optional: draw your rectangle using your own bounds
// (or a simple version based on start/high/low)

ONCE zoneStart = 0

ONCE zoneHigh
ONCE zoneLow

0.0
0.0

IF ZoneState = 1 THEN
IF ZonePulse = 1 THEN

zoneStart = barindex
zoneHigh = high
zoneLow = low
ELSE
zoneHigh = MAX (zoneHigh, high)
zoneLow = MIN(zoneLow, low)
ENDIF

DRAWRECTANGLE (zoneStart, zoneHigh, barindex + 2000, zoneLow) COLOURED(0,0,0)
FILLCOLOR(0,204,255)
ENDIF

RETURN ZonePulse AS "ZonePulse", ZoneState AS "ZoneState"

And the strategy trades off the exact same signals:

DEFPARAM PRELOADBARS = 5000
DEFPARAM CumulateOrders = False

// (paste the CORE SIGNAL BLOCK here)

UseFirstBarOnly = TRUE // TRUE: enter only when the zone appears (ZonePulse)

inSession

time >= 090000 AND time <= 170000

canTrade = (UseFirstBarOnly AND ZonePulse = 1) OR ((NOT UseFirstBarOnly) AND
ZoneState = 1)

// Your entry direction filters/conditions:
entryLong = <your long condition(s) built on the same inputss>
entryShort = <your short condition(s) >

// Gate entries with the zone
IF NOT onmarket AND inSession AND canTrade THEN

IF

entryLong THEN
BUY 1 CONTRACT AT MARKET

ELSIF entryShort THEN

SELLSHORT 1 CONTRACT AT MARKET

ENDIF

ENDIF

SET TARGET pPROFIT 100
SET STOP pLOSS 60
SET STOP TRAILING 40

// Flatten at end of session
IF time >= 170000 THEN
CANCEL PENDING ORDERS

IF

longonmarket THEN
SELL AT MARKET

ELSIF shortonmarket THEN

EXITSHORT AT MARKET

ENDIF

ENDIF

Why this guarantees “identical, non-repainting”

Identical: the same lines of code determine valid, ZonePulse, ZoneState in both files. No
divergence, no “I changed it here but forgot there.”

Non-repainting: you confirm state changes with [1] (e.g., valid = 1 AND Vvalid[1] = 0), SO
signals only fire when a bar finishes and flips state. No intrabar peeking, no future data, no
centered/forward-looking averages.

Execution parity: the indicator’s ZonePulse spikes exactly on bars where the strategy can place
orders (end-of-bar). When you see a pulse on the chart, you should see a backtest trade on that bar
too.

Quick QA checklist

Same inputs/parameters in both (periods, thresholds, time filters).

No forward-looking functions (don’t reference future bars; avoid centered MAs).

Use [1] for “fresh” events (crosses, start/stop of zones).

Strategy uses DEFPARAM PRELOADBARS high enough for your longest lookback.

Indicator uses DEFPARAM CALCULATEONLASTBARS (optional) for performance; it does not affect
the logic, only compute span.

o Validate parity: add PRINT ("ZP ", time) in strategy when zonePulse=1 and confirm it matches
pulses on the indicator.

If you paste your current zone/rectangle condition (the lines that set valid in your indicator), I’1l drop
them into that CORE SIGNAL BLOCK for you, and you’ll have a matched pair you can run
immediately.

You said:

I'm bit confused. Write me all separately what should go in to the indicator and what should be in the
strategy.

ChatGPT said:

Understood. Here’s a clean, copy-paste pair — one Indicator and one Strategy — plus precise
instructions on what to edit in each.

Indicator — “ZoneAlert Indicator”

Purpose: draw your rectangle and expose two alertable lines:

e ZzZonePulse = | only on the first bar the zone appears (one-bar spike).
e zoneState = | for every bar while the zone is active.

Edit the VALIDITY LOGIC block to match the condition that currently triggers your FILLCOLOR.

B —
// Indicator: ZoneAlert Indicator
// Turns your zone into alertable outputs + rectangle

/] ======m========mmm=m=m—m—meaa-

DEFPARAM DrawOnLastBarOnly = False
DEFPARAM CalculateOnLastBars = 2000 // for performance; adjust/omit if you want
full history

/) ———------=-- SAFE INITIALISATION ----------

ONCE Valid =0

ONCE ZonePulse = 0

ONCE ZoneState = 0

ONCE zoneStart = 0

ONCE zoneHigh = 0.0

ONCE zonelLow = 0.0

A [EDIT THIS] VALIDITY LOGIC (your zone condition) ----------

// Demo example below (fresh cross UP of a 50-MA). Replace with your real logic.
MAperiod = 50
ma = average [MAperiod] (close)

IF close > ma AND close[l] <= ma[l] THEN

Valid = 1
ELSE
Valid = 0
ENDIF
/T ——— SIGNALS ----------
IF Valid = 1 AND Valid[l] = 0 THEN

ZonePulse = 1

ELSE

ZonePulse = 0
ENDIF
ZoneState = Valid

/] ---------- RECTANGLE DRAW (simple self-contained version) ----------
IF zZoneState = 1 THEN
IF ZonePulse = 1 THEN
// zone just started
zoneStart = barindex
zoneHigh = high
zoneLow = low
ELSE
// grow with extremes while zone remains active (optional)
IF high > zoneHigh THEN
zoneHigh = high
ENDIF
IF low < zoneLow THEN
zonelLow = low
ENDIF
ENDIF

// xl=zoneStart, yl=zoneHigh, x2=future, y2=zoneLow

DRAWRECTANGLE (zoneStart, zoneHigh, barindex + 2000, zoneLow) COLOURED(0,0,0)
FILLCOLOR(0,204,255)
ENDIF

/] —--=---===- RETURN LINES FOR ALERTS ----------
RETURN ZonePulse AS "ZonePulse", ZoneState AS "ZoneState"

How to use the Indicator

Paste & compile as a new indicator.

Replace the VALIDITY LOGIC block with the exact condition that used to trigger your
FILLCOLOR.

3. Add to your chart — create alerts:

o ZonePulse — Crosses above (.5 (fires once per new rectangle).

o ZoneState — Crosses above (.5 (fires when the zone turns on; optional).

N —

Strategy — “ZoneGate_Strategy”

Purpose: trade the same logic used by the indicator. You choose whether to enter only on the first bar
of a new zone (ZonePulse) or any bar while the zone is active (ZoneState).

Again: edit the VALIDITY LOGIC block to the same code you used in the indicator.

2
// Strategy: ZoneGate Strategy
// Trades only when your zone appears (or while active)

T AR

DEFPARAM PrelLoadBars = 5000
DEFPARAM CumulateOrders = False

Y/ —— PARAMETERS ----------
tpPoints = 100 // take profit (points)
slPoints = 60 // stop loss (points)

tsPoints = 40 // trailing stop (points)

startTime 090000 // session
endTime = 170000 // session

UseFirstBarOnly = TRUE // TR

start
end

UE: trade only when zone appears

(edit for your market)

(ZonePulse)

// FALSE: allow entries while zone remains active

(ZoneState)

Enablelongs =1

EnableShorts = 0

default)

/) -———-=-=--=-- SAFE INITIALISAT
ONCE Valid =0

ONCE ZonePulse = 0

ONCE ZoneState = 0

/T [EDIT THIS] VALI
// Demo example
MAperiod = 50

ma = average [MAperiod] (close)

IF close > ma AND close[l] <=
Valid = 1

ELSE
Valid = 0

ENDIF

/] - SIGNALS --------

IF Valid = 1 AND Valid[1l] = 0
ZonePulse = 1

ELSE
ZonePulse = 0

ENDIF

ZoneState = Valid

/) ——------=-- SESSION FILTER -

// set 0 to disable longs
// set 1 to also allow shorts

DITY LOGIC (SAME AS INDICATOR)
(fresh cross UP of a 50-MA). Replace with your real logic.

ma[l] THEN

inSession = time >= startTime AND time <= endTime

(example keeps shorts off by

A GATING ----------

canTrade = (UseFirstBarOnly AND ZonePulse = 1) OR ((NOT UseFirstBarOnly) AND
ZoneState = 1)

/] ---------- DIRECTIONAL ENTRY LOGIC ----------

// For a minimal, “trade-the-zone” prototype:

// - Longs: enter when allowed by canTrade and longs are enabled.

// - Shorts: same, if enabled

IF NOT onmarket AND inSession AND canTrade THEN

IF Enablelongs = 1 THEN
BUY 1 CONTRACT AT MARKET
ELSIF EnableShorts = 1 THEN
SELLSHORT 1 CONTRACT AT
ENDIF

ENDIF

A RISK MANAGEMENT
SET TARGET pPROFIT tpPoints
SET STOP pLOSS slPoints
SET STOP TRAILING tsPoints

/] === =- FLATTEN AT END O

IF time >= endTime THEN
CANCEL PENDING ORDERS
IF longonmarket THEN
SELL AT MARKET
ELSIF shortonmarket THEN
EXITSHORT AT MARKET

MARKET

F SESSION ----------

// closes a LONG

// closes a SHORT

ENDIF

ENDIF

How to use the Strategy

1.

Paste & compile as a ProOrder strategy.

2. Replace the VALIDITY LOGIC block with the same code you used in the indicator.

i

Set useFirstBaroOnly = TRUE if you only want entries on the very first bar the rectangle appears
(this matches your manual approach with FILLCOLOR).

Choose directions: EnableLongs / EnableShorts.

Adjust tpPoints, slPoints, tsPoints, startTime, endTime.

Backtest — PaperTrade — Live.

What you must keep identical in both files

The entire VALIDITY LOGIC block.
The computation of ZonePulse and ZoneState.

This guarantees the bars where the indicator fires are the same bars the strategy is allowed to trade — no
surprises, no repainting.

Optional add-ons (strategy)

One trade per zone: track a zone counter and block re-entries until a new zone starts.

Bias (bullish vs bearish) zones: if your zone can be tagged bullish/bearish, gate longs/shorts
accordingly instead of EnableLongs/EnableShorts.

Cooldown: require N bars between trades to prevent flip-flops in chop.

If you share the lines that define your current zone (the logic behind your FILLCOLOR), I’ll drop them
straight into both blocks and return a final pair that mirrors your chart exactly.

You said:

1.) I dont see any "VALIDITY LOGIC" in the “ZoneGate Strategy” 2.) Error on the "TRUE" in :
UseFirstBarOnly = TRUE 3.) Error on the "PENDING" in: CANCEL PENDING ORDERS

ChatGPT said:

Good catches. Three fixes up front:

1.

2.
3.

I’ve made the VALIDITY LOGIC block impossible to miss — it’s now wrapped with big “EDIT
HERE” markers.

Use 1/0 (integers) instead of TRUE/FALSE.

The correct cancel syntax is CANCEL PENDINGORDERS (No space).

Below are clean, compile-safe versions.

Indicator — ZoneAlert Indicator (final)

F

// Indicator: ZoneAlert Indicator

// Exposes ZonePulse (one bar) + ZoneState (persistent) and draws the rectangle

/] =======mm====mmmmmmmmemmmmeaa-

DEFPARAM DrawOnLastBarOnly = False
DEFPARAM CalculateOnLastBars = 2000

// ---- SAFE INIT ----
ONCE Valid =
ONCE ZonePulse
ONCE ZoneState
ONCE zoneStart
ONCE zoneHigh
ONCE zoneLow =

I n
O O O o oo
o O

// =============== EDIT HERE: VALIDITY LOGIC ======
// Replace the demo with YOUR exact condition that
// previously triggered FILLCOLOR in your indicator.
J = s
// Demo: fresh cross UP of a 50-MA

MAperiod = 50

ma = average [MAperiod] (close)

IF close > ma AND close[l] <= ma[l] THEN

Valid = 1
ELSE
Valid = 0
ENDIF
// ============= END VALIDITY LOGIC ===============
/] mmmmmmmmmmmmm e
// ---- SIGNALS ----
IF Valid = 1 AND Valid[1l] = 0 THEN
ZonePulse = 1
ELSE
ZonePulse = 0
ENDIF

ZoneState = Valid

// ---- RECTANGLE DRAW (self-contained bounds) ----
IF ZoneState = 1 THEN
IF ZonePulse = 1 THEN

zoneStart = barindex
zoneHigh = high
zoneLow = low

ELSE

IF high > zoneHigh THEN
zoneHigh = high
ENDIF
IF low < zoneLow THEN
zonelLow = low
ENDIF
ENDIF
// Extend to the right: barindex + 2000
DRAWRECTANGLE (zoneStart, zoneHigh, barindex + 2000, zoneLow)
FILLCOLOR(0,204,255)
ENDIF

// ---- RETURN LINES FOR ALERTS ----
RETURN ZonePulse AS "ZonePulse", ZoneState AS "ZoneState"

COLOURED (0,0, 0)

Use: add to chart — create alerts on:

e ZonePulse — ‘“‘crosses above 0.5” (one alert when the box appears)
e ZoneState — ‘“‘crosses above 0.5” (alert when zone turns on)

Strategy — ZoneGate_Strategy (final)

A —
// Strategy: ZoneGate Strategy
// Trades only when the zone appears (or while active)

T i AT

DEFPARAM PrelLoadBars = 5000
DEFPARAM CumulateOrders = False

// ---- PARAMETERS ----

tpPoints = 100

slPoints = 60

tsPoints = 40

startTime = 090000

endTime = 170000

UseFirstBarOnly = 1 // 1 = enter only when the zone appears (ZonePulse)
// 0 = allow entries any bar while zone is active (ZoneState)

EnableLongs = 1 // l=allow longs, O=disable

EnableShorts = 0 // l=allow shorts, 0=disable

// ---- SAFE INIT ----

ONCE Valid =0

ONCE ZonePulse = 0
ONCE ZoneState = 0

A —
// =============== EDIT HERE: VALIDITY LOGIC ======
// Paste the SAME logic you used in the indicator.
T

// Demo: fresh cross UP of a 50-MA
MAperiod = 50
ma = average [MAperiod] (close)

IF close > ma AND close[l] <= ma[l] THEN

Valid = 1
ELSE
Valid = 0
ENDIF
// ============= END VALIDITY LOGIC ===============
S
// ---- SIGNALS (must match indicator) ----
IF Valid = 1 AND Valid[1l] = 0 THEN
ZonePulse = 1
ELSE
ZonePulse = 0
ENDIF

ZoneState = Valid

// ---- SESSION FILTER ----
inSession = time >= startTime AND time <= endTime

// ---- ENTRY GATING ----

canTrade = (UseFirstBarOnly = 1 AND ZonePulse = 1) OR (UseFirstBarOnly = 0 AND
ZoneState = 1)

// ---- DIRECTIONAL ENTRY ----
IF NOT onmarket AND inSession AND canTrade THEN
IF Enablelongs = 1 THEN
BUY 1 CONTRACT AT MARKET
ELSIF EnableShorts = 1 THEN
SELLSHORT 1 CONTRACT AT MARKET
ENDIF
ENDIF

// ---- RISK MANAGEMENT ----
SET TARGET pPROFIT tpPoints
SET STOP pLOSS slPoints
SET STOP TRAILING tsPoints

// ---- FLATTEN AT END OF SESSION ----
IF time >= endTime THEN

CANCEL PENDINGORDERS

IF longonmarket THEN

SELL AT MARKET // close LONG
ELSIF shortonmarket THEN

EXITSHORT AT MARKET // close SHORT
ENDIF

ENDIF

What you must keep identical

e The VALIDITY LOGIC block.
e The signals (zonePulse, ZoneState).

That guarantees the same bars that show your FILLCOLOR/ZonePulse in the indicator are the bars the
strategy is allowed to act on. If you want me to drop your real zone condition in both files, paste that
snippet and I’ll wire it in.

You said:

error "pendingorders": CANCEL PENDINGORDERS

ChatGPT said:

You’re getting that error because there is no CANCEL. PENDINGORDERS instruction in ProOrder. That
was on me. In ProRealTime:

e Pending entry orders (STOP/LIMIT) expire automatically at the next bar close unless you re-
issue them in your code. You generally don’t “cancel” them manually. ProRealCode

e Ifyou want the platform to cancel all pending orders and close positions at a time, use
DEFPARAM FlatAfter = HHMMSS. That parameter explicitly cancels pendings and flattens after
the time you set. ProRealTime

e To remove protective orders you set in code (targets/stops/trailing stops), set them to 0 (this
deactivates them). ProRealTime+1

Here are two clean ways to handle end-of-session flattening without the invalid command:

Option A — one-liner policy (preferred)

Put this at the top of your strategy:

DEFPARAM FlatAfter = 170000 // set to your session end

That’s it. After 17:00:00, ProOrder will cancel all pending orders and close any open positions for this
system. ProRealTime

Option B— manual block (if you need custom
timing/logic)

IF time >= endTime THEN
// 1) deactivate any protection orders you set earlier
SET TARGET pPROFIT O
SET STOP pLOSS 0
SET STOP TRAILING O // also valid: SET STOP PTRAILING O

// 2) close any open position
IF longonmarket THEN
SELL AT MARKET
ELSIF shortonmarket THEN
EXITSHORT AT MARKET
ENDIF

// 3) do NOT re-place any pending STOP/LIMIT entries after this point.

// They expire automatically at next bar if not re-issued.
ENDIF
Why it works:

e Step 1 clears targets/stops/trailing stops you created in code by setting them to 0 (the documented
way to deactivate). ProRealTime+1

e Step 3 leverages ProOrder’s behavior: pending entries auto-cancel at bar close unless renewed.
ProRealCode

TL;DR

Delete the cANCEL PENDINGORDERS line. Use Flatafter for automatic cleanup, or manually close
positions and set stops/targets to 0 and simply stop re-issuing any pending orders. This is the supported,
compile-safe way to flatten and clear orders in ProOrder.

You said:

No more errors. I'll test it and let you know.

ChatGPT said:

Great. Here’s a tight test plan so you don’t waste time.

What to verify (in order)

1. Indicator-only sanity

e Add ZoneAlert_Indicator to your chart.
o Create an alert on ZonePulse — crosses above 0.5.
e Visually confirm: each time the rectangle first appears, ZonePulse spikes once and the alert fires.

2. Strategy parity

e Load ZoneGate_Strategy on the same instrument/timeframe.

o Make sure the VALIDITY LOGIC block in the strategy is identical to the indicator.

e SetUseFirstBarOnly = 1.

e Backtest quickly: each ZonePulse (from the indicator) should line up with a strategy entry on the
same bar close.

3. Session & flattening

e Confirm startTime/endTime (GMTH2 for you).
e Prefer DEFPARAM FlatAfter = endTime (one line, zero headache). If you didn’t add it, your
manual block is fine.

4. Risk controls

o Confirm SET TARGET, SET STOP pLOSS, SET STOP TRAILING are actually applied (the backtest
detail should show active protections).
e Tune points to match the instrument’s point value.

Quick troubleshooting

o No rectangles / no alerts: your VALIDITY LOGIC isn’t firing on this timeframe/instrument. Test
with a simpler condition (e.g., 5-bar breakout) to isolate.

e Multiple trades per rectangle: set UseFirstBaroOnly = 1. Ifstill noisy, we can add the one-trade-
per-zone guard I posted earlier.

o Entries not matching indicators: you edited the validity block in one file but not the other, or
you’re using a function that repaints. Keep [1] checks for “fresh” events.

Practical tips

o PreLoadBars (strategy): set it larger than your longest lookback. 5000 is a safe default; bump if
you use long MAs.

o CalculateOnLastBars (indicator): purely for performance; it won’t change logic.

o Keep directions explicit (EnableLongs/Enableshorts) while you validate.

When you report back, include: instrument, timeframe, your final VALIDITY LOGIC (the bit that used

to trigger FILLCOLOR), and whether you want one trade per zone. If anything is off, I’ll adjust the
code to lock your visual, alert, and trading behavior 1:1.

ChatGPT can make mistakes. Check important info. See Cookie Preferences.

