[bookmark: _GoBack]//+--+
//| MACD_Squeeze.mq5 |
//| Copyright 2018, MetaQuotes Software Corp. |
//| https://mql5.com |
//+--+
#property copyright "Copyright 2018, MetaQuotes Software Corp."
#property link "https://mql5.com"
#property version "1.00"
#property description "MACD Squeeze oscillator"
#property indicator_separate_window
#property indicator_buffers 10
#property indicator_plots 3
//--- plot MACD
#property indicator_label1 "MACDS"
#property indicator_type1 DRAW_COLOR_HISTOGRAM
#property indicator_color1 clrGreen,clrRed
#property indicator_style1 STYLE_SOLID
#property indicator_width1 2
//--- plot SqueezeIN
#property indicator_label2 "Signal IN"
#property indicator_type2 DRAW_ARROW
#property indicator_color2 clrBlue
#property indicator_style2 STYLE_SOLID
#property indicator_width2 1
//--- plot SqueezeOUT
#property indicator_label3 "Signal OUT"
#property indicator_type3 DRAW_ARROW
#property indicator_color3 clrSilver
#property indicator_style3 STYLE_SOLID
#property indicator_width3 1
//--- input parameters
input uint InpPeriodFastEMA = 8; // MACD Fast EMA period
input uint InpPeriodSlowEMA = 21; // MACD Slow EMA period
input uint InpPeriodBB = 20; // Bollinger Bands period
input double InpDeviationBB = 2.0; // Bollinger Bands deviation
input ENUM_MA_METHOD InpMethodBB = MODE_EMA; // Bollinger Bands MA method
input uint InpPeriodKeltner = 20; // Keltner period
input double InpDeviationKeltner = 1.5; // Keltner deviation
input uint InpPeriodATRKeltner = 10; // Keltner ATR period
input ENUM_MA_METHOD InpMethodKeltner = MODE_EMA; // Keltner MA method
//--- indicator buffers
double BufferMACD[];
double BufferColors[];
double BufferSqueezeIN[];
double BufferSqueezeOUT[];
double BufferFMA[];
double BufferSMA[];
double BufferBBMA[];
double BufferBBDEV[];
double BufferKMA[];
double BufferKATR[];
//--- global variables
int period_fema;
int period_sema;
int period_bb;
int period_klt;
int period_katr;
int handle_fma;
int handle_sma;
int handle_bbma;
int handle_bbdev;
int handle_kma;
int handle_katr;
double dev_bb;
double dev_klt;
//+--+
//| Custom indicator initialization function |
//+--+
int OnInit()
 {
//--- set global variables
 period_fema=int(InpPeriodFastEMA<1 ? 1 : InpPeriodFastEMA);
 period_sema=int(InpPeriodSlowEMA<1 ? 1 : InpPeriodSlowEMA);
 period_bb=int(InpPeriodBB<1 ? 1 : InpPeriodBB);
 period_klt=int(InpPeriodKeltner<1 ? 1 : InpPeriodKeltner);
 period_katr=int(InpPeriodATRKeltner<1 ? 1 : InpPeriodATRKeltner);
 dev_bb=InpDeviationBB;
 dev_klt=InpDeviationKeltner;
//--- indicator buffers mapping
 SetIndexBuffer(0,BufferMACD,INDICATOR_DATA);
 SetIndexBuffer(1,BufferColors,INDICATOR_COLOR_INDEX);
 SetIndexBuffer(2,BufferSqueezeIN,INDICATOR_DATA);
 SetIndexBuffer(3,BufferSqueezeOUT,INDICATOR_DATA);
 SetIndexBuffer(4,BufferFMA,INDICATOR_CALCULATIONS);
 SetIndexBuffer(5,BufferSMA,INDICATOR_CALCULATIONS);
 SetIndexBuffer(6,BufferBBMA,INDICATOR_CALCULATIONS);
 SetIndexBuffer(7,BufferBBDEV,INDICATOR_CALCULATIONS);
 SetIndexBuffer(8,BufferKMA,INDICATOR_CALCULATIONS);
 SetIndexBuffer(9,BufferKATR,INDICATOR_CALCULATIONS);
//--- setting a code from the Wingdings charset as the property of PLOT_ARROW
 PlotIndexSetInteger(1,PLOT_ARROW,119);
 PlotIndexSetInteger(2,PLOT_ARROW,119);
//--- setting indicator parameters
 IndicatorSetString(INDICATOR_SHORTNAME,"MACD Squeeze ("+(string)period_fema+","+(string)period_sema+","+(string)period_bb+","+(string)period_klt+","+(string)period_katr+")");
 IndicatorSetInteger(INDICATOR_DIGITS,Digits());
//--- setting buffer arrays as timeseries
 ArraySetAsSeries(BufferMACD,true);
 ArraySetAsSeries(BufferColors,true);
 ArraySetAsSeries(BufferSqueezeIN,true);
 ArraySetAsSeries(BufferSqueezeOUT,true);
 ArraySetAsSeries(BufferFMA,true);
 ArraySetAsSeries(BufferSMA,true);
 ArraySetAsSeries(BufferBBMA,true);
 ArraySetAsSeries(BufferBBDEV,true);
 ArraySetAsSeries(BufferKMA,true);
 ArraySetAsSeries(BufferKATR,true);
//--- create MA's handles
 ResetLastError();
 handle_fma=iMA(NULL,PERIOD_CURRENT,period_fema,0,MODE_EMA,PRICE_CLOSE);
 if(handle_fma==INVALID_HANDLE)
 {
 Print(__LINE__,": The iMA(",(string)period_fema,") object was not created: Error ",GetLastError());
 return INIT_FAILED;
 }
 handle_sma=iMA(NULL,PERIOD_CURRENT,period_sema,0,MODE_EMA,PRICE_CLOSE);
 if(handle_sma==INVALID_HANDLE)
 {
 Print(__LINE__,": The iMA(",(string)period_sema,") object was not created: Error ",GetLastError());
 return INIT_FAILED;
 }
 handle_bbma=iMA(NULL,PERIOD_CURRENT,period_bb,0,InpMethodBB,PRICE_CLOSE);
 if(handle_bbma==INVALID_HANDLE)
 {
 Print(__LINE__,": The iMA(",(string)period_bb,") object was not created: Error ",GetLastError());
 return INIT_FAILED;
 }
 handle_bbdev=iStdDev(NULL,PERIOD_CURRENT,period_bb,0,MODE_SMA,PRICE_CLOSE);
 if(handle_bbdev==INVALID_HANDLE)
 {
 Print(__LINE__,": The iStdDev(",(string)period_bb,") object was not created: Error ",GetLastError());
 return INIT_FAILED;
 }

 handle_kma=iMA(NULL,PERIOD_CURRENT,period_klt,0,InpMethodKeltner,PRICE_CLOSE);
 if(handle_kma==INVALID_HANDLE)
 {
 Print(__LINE__,": The iMA(",(string)period_klt,") object was not created: Error ",GetLastError());
 return INIT_FAILED;
 }

 handle_katr=iATR(NULL,PERIOD_CURRENT,period_katr);
 if(handle_katr==INVALID_HANDLE)
 {
 Print(__LINE__,": The iATR(",(string)period_katr,") object was not created: Error ",GetLastError());
 return INIT_FAILED;
 }

//---
 return(INIT_SUCCEEDED);
 }
//+--+
//| Custom indicator iteration function |
//+--+
int OnCalculate(const int rates_total,
 const int prev_calculated,
 const datetime &time[],
 const double &open[],
 const double &high[],
 const double &low[],
 const double &close[],
 const long &tick_volume[],
 const long &volume[],
 const int &spread[])
 {
//--- Проверка и расчёт количества просчитываемых баров
 if(rates_total<4) return 0;
//--- Проверка и расчёт количества просчитываемых баров
 int limit=rates_total-prev_calculated;
 if(limit>1)
 {
 limit=rates_total-2;
 ArrayInitialize(BufferMACD,EMPTY_VALUE);
 ArrayInitialize(BufferSqueezeIN,EMPTY_VALUE);
 ArrayInitialize(BufferSqueezeOUT,EMPTY_VALUE);
 ArrayInitialize(BufferFMA,0);
 ArrayInitialize(BufferSMA,0);
 ArrayInitialize(BufferBBMA,0);
 ArrayInitialize(BufferBBDEV,0);
 ArrayInitialize(BufferKMA,0);
 ArrayInitialize(BufferKATR,0);
 }
//--- Подготовка данных
 int count=(limit>1 ? rates_total : 1),copied=0;
 copied=CopyBuffer(handle_fma,0,0,count,BufferFMA);
 if(copied!=count) return 0;
 copied=CopyBuffer(handle_sma,0,0,count,BufferSMA);
 if(copied!=count) return 0;
 copied=CopyBuffer(handle_bbma,0,0,count,BufferBBMA);
 if(copied!=count) return 0;
 copied=CopyBuffer(handle_bbdev,0,0,count,BufferBBDEV);
 if(copied!=count) return 0;
 copied=CopyBuffer(handle_kma,0,0,count,BufferKMA);
 if(copied!=count) return 0;
 copied=CopyBuffer(handle_katr,0,0,count,BufferKATR);
 if(copied!=count) return 0;

//--- Расчёт индикатора
 for(int i=limit; i>=0 && !IsStopped(); i--)
 {
 BufferMACD[i]=BufferFMA[i]-BufferSMA[i];
 BufferColors[i]=(BufferMACD[i]<BufferMACD[i+1] ? 1 : 0);

 double BB_MA=BufferBBMA[i];
 double BB_StdDev=BufferBBDEV[i];
 double BTL=BB_MA+BB_StdDev*InpDeviationBB;
 double BBL=BB_MA-BB_StdDev*InpDeviationBB;

 double K_MA=BufferKMA[i];
 double K_ATR=BufferKATR[i];
 double KTL=K_MA+K_ATR*InpDeviationKeltner;
 double KBL=K_MA-K_ATR*InpDeviationKeltner;

 if(BTL<KTL && BBL>KBL)
 {
 BufferSqueezeOUT[i]=EMPTY_VALUE;
 BufferSqueezeIN[i]=0;
 }
 else
 {
 BufferSqueezeIN[i]=EMPTY_VALUE;
 BufferSqueezeOUT[i]=0;
 }
 }

//--- return value of prev_calculated for next call
 return(rates_total);
 }
//+--+

[image:]
image.png
[Tl oo 13000 1308z 1901 nms o

iy I “. Olu'
Hm A “ ﬁ‘.‘-umﬂ‘
' it e
|ﬂ (i Y‘M' xuqx '0 'w' t“‘ln“
' l‘l "W
.)
ﬂ'“ M“ M |ﬂl,om u .lwm
e EREe HEn PRREbEe REED PR MHEE
il I
Tt

L4 10ay 2015 55 May 1300 16 My 0500 16 May 2100 17 May 1300 15 May 05100 16 May 2100 21 May 1500 32 May 05:00 22 Hiay 21100

135670

135410

135150

1349

13430

136m

o0is3

o000

oo,

