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The human visual system is one of the wonders of the world.

Consider the following sequence of handwritten digits:

Most people effortlessly recognize those digits as 504192. That ease

is deceptive. In each hemisphere of our brain, humans have a

primary visual cortex, also known as V1, containing 140 million

neurons, with tens of billions of connections between them. And yet

human vision involves not just V1, but an entire series of visual

cortices - V2, V3, V4, and V5 - doing progressively more complex

image processing. We carry in our heads a supercomputer, tuned by

evolution over hundreds of millions of years, and superbly adapted

to understand the visual world. Recognizing handwritten digits isn't

easy. Rather, we humans are stupendously, astoundingly good at

making sense of what our eyes show us. But nearly all that work is

done unconsciously. And so we don't usually appreciate how tough

a problem our visual systems solve.

The difficulty of visual pattern recognition becomes apparent if you

attempt to write a computer program to recognize digits like those

above. What seems easy when we do it ourselves suddenly becomes

extremely difficult. Simple intuitions about how we recognize

shapes - "a 9 has a loop at the top, and a vertical stroke in the

bottom right" - turn out to be not so simple to express

algorithmically. When you try to make such rules precise, you

quickly get lost in a morass of exceptions and caveats and special

cases. It seems hopeless.

Neural networks approach the problem in a different way. The idea

is to take a large number of handwritten digits, known as training

examples,
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and then develop a system which can learn from those training

examples. In other words, the neural network uses the examples to

automatically infer rules for recognizing handwritten digits.

Furthermore, by increasing the number of training examples, the

network can learn more about handwriting, and so improve its

accuracy. So while I've shown just 100 training digits above,

perhaps we could build a better handwriting recognizer by using

thousands or even millions or billions of training examples.

In this chapter we'll write a computer program implementing a

neural network that learns to recognize handwritten digits. The

program is just 74 lines long, and uses no special neural network

libraries. But this short program can recognize digits with an

accuracy over 96 percent, without human intervention.

Furthermore, in later chapters we'll develop ideas which can

improve accuracy to over 99 percent. In fact, the best commercial

neural networks are now so good that they are used by banks to

process cheques, and by post offices to recognize addresses.

We're focusing on handwriting recognition because it's an excellent

prototype problem for learning about neural networks in general.

As a prototype it hits a sweet spot: it's challenging - it's no small feat

to recognize handwritten digits - but it's not so difficult as to require

an extremely complicated solution, or tremendous computational

power. Furthermore, it's a great way to develop more advanced

techniques, such as deep learning. And so throughout the book we'll

return repeatedly to the problem of handwriting recognition. Later

in the book, we'll discuss how these ideas may be applied to other
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problems in computer vision, and also in speech, natural language

processing, and other domains.

Of course, if the point of the chapter was only to write a computer

program to recognize handwritten digits, then the chapter would be

much shorter! But along the way we'll develop many key ideas

about neural networks, including two important types of artificial

neuron (the perceptron and the sigmoid neuron), and the standard

learning algorithm for neural networks, known as stochastic

gradient descent. Throughout, I focus on explaining why things are

done the way they are, and on building your neural networks

intuition. That requires a lengthier discussion than if I just

presented the basic mechanics of what's going on, but it's worth it

for the deeper understanding you'll attain. Amongst the payoffs, by

the end of the chapter we'll be in position to understand what deep

learning is, and why it matters.

Perceptrons
What is a neural network? To get started, I'll explain a type of

artificial neuron called a perceptron. Perceptrons were developed in

the 1950s and 1960s by the scientist Frank Rosenblatt, inspired by

earlier work by Warren McCulloch and Walter Pitts. Today, it's

more common to use other models of artificial neurons - in this

book, and in much modern work on neural networks, the main

neuron model used is one called the sigmoid neuron. We'll get to

sigmoid neurons shortly. But to understand why sigmoid neurons

are defined the way they are, it's worth taking the time to first

understand perceptrons.

So how do perceptrons work? A perceptron takes several binary

inputs, , and produces a single binary output:

In the example shown the perceptron has three inputs, . In

general it could have more or fewer inputs. Rosenblatt proposed a

simple rule to compute the output. He introduced weights, 

, real numbers expressing the importance of the

, , …x1 x2

, ,x1 x2 x3

, , …w1 w2
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respective inputs to the output. The neuron's output,  or , is

determined by whether the weighted sum  is less than or

greater than some threshold value. Just like the weights, the

threshold is a real number which is a parameter of the neuron. To

put it in more precise algebraic terms:

That's all there is to how a perceptron works!

That's the basic mathematical model. A way you can think about the

perceptron is that it's a device that makes decisions by weighing up

evidence. Let me give an example. It's not a very realistic example,

but it's easy to understand, and we'll soon get to more realistic

examples. Suppose the weekend is coming up, and you've heard

that there's going to be a cheese festival in your city. You like

cheese, and are trying to decide whether or not to go to the festival.

You might make your decision by weighing up three factors:

1. Is the weather good?

2. Does your boyfriend or girlfriend want to accompany you?

3. Is the festival near public transit? (You don't own a car).

We can represent these three factors by corresponding binary

variables , and . For instance, we'd have  if the

weather is good, and  if the weather is bad. Similarly, 

if your boyfriend or girlfriend wants to go, and  if not. And

similarly again for  and public transit.

Now, suppose you absolutely adore cheese, so much so that you're

happy to go to the festival even if your boyfriend or girlfriend is

uninterested and the festival is hard to get to. But perhaps you

really loathe bad weather, and there's no way you'd go to the festival

if the weather is bad. You can use perceptrons to model this kind of

decision-making. One way to do this is to choose a weight 

for the weather, and  and  for the other conditions.

The larger value of  indicates that the weather matters a lot to

you, much more than whether your boyfriend or girlfriend joins

you, or the nearness of public transit. Finally, suppose you choose a

threshold of  for the perceptron. With these choices, the

perceptron implements the desired decision-making model,

0 1

∑j wjxj

output = {
0

1

if  ≤  threshold∑j wjxj

if  >  threshold∑j wjxj

(1)

,x1 x2 x3 = 1x1

= 0x1 = 1x2

= 0x2

x3

= 6w1

= 2w2 = 2w3

w1

5
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outputting  whenever the weather is good, and  whenever the

weather is bad. It makes no difference to the output whether your

boyfriend or girlfriend wants to go, or whether public transit is

nearby.

By varying the weights and the threshold, we can get different

models of decision-making. For example, suppose we instead chose

a threshold of . Then the perceptron would decide that you should

go to the festival whenever the weather was good or when both the

festival was near public transit and your boyfriend or girlfriend was

willing to join you. In other words, it'd be a different model of

decision-making. Dropping the threshold means you're more

willing to go to the festival.

Obviously, the perceptron isn't a complete model of human

decision-making! But what the example illustrates is how a

perceptron can weigh up different kinds of evidence in order to

make decisions. And it should seem plausible that a complex

network of perceptrons could make quite subtle decisions:

In this network, the first column of perceptrons - what we'll call the

first layer of perceptrons - is making three very simple decisions, by

weighing the input evidence. What about the perceptrons in the

second layer? Each of those perceptrons is making a decision by

weighing up the results from the first layer of decision-making. In

this way a perceptron in the second layer can make a decision at a

more complex and more abstract level than perceptrons in the first

layer. And even more complex decisions can be made by the

perceptron in the third layer. In this way, a many-layer network of

perceptrons can engage in sophisticated decision making.

Incidentally, when I defined perceptrons I said that a perceptron

has just a single output. In the network above the perceptrons look

like they have multiple outputs. In fact, they're still single output.

The multiple output arrows are merely a useful way of indicating

1 0

3
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that the output from a perceptron is being used as the input to

several other perceptrons. It's less unwieldy than drawing a single

output line which then splits.

Let's simplify the way we describe perceptrons. The condition 

 is cumbersome, and we can make two

notational changes to simplify it. The first change is to write 

 as a dot product, , where  and  are

vectors whose components are the weights and inputs, respectively.

The second change is to move the threshold to the other side of the

inequality, and to replace it by what's known as the perceptron's

bias, . Using the bias instead of the threshold, the

perceptron rule can be rewritten:

You can think of the bias as a measure of how easy it is to get the

perceptron to output a . Or to put it in more biological terms, the

bias is a measure of how easy it is to get the perceptron to fire. For a

perceptron with a really big bias, it's extremely easy for the

perceptron to output a . But if the bias is very negative, then it's

difficult for the perceptron to output a . Obviously, introducing the

bias is only a small change in how we describe perceptrons, but

we'll see later that it leads to further notational simplifications.

Because of this, in the remainder of the book we won't use the

threshold, we'll always use the bias.

I've described perceptrons as a method for weighing evidence to

make decisions. Another way perceptrons can be used is to compute

the elementary logical functions we usually think of as underlying

computation, functions such as AND, OR, and NAND. For example,

suppose we have a perceptron with two inputs, each with weight 

, and an overall bias of . Here's our perceptron:

Then we see that input  produces output , since 

 is positive. Here, I've introduced the 

symbol to make the multiplications explicit. Similar calculations

show that the inputs  and  produce output . But the input 

> threshold∑j wjxj

∑j wjxj w ⋅ x ≡ ∑j wjxj w x

b ≡ −threshold

output = {0

1

if w ⋅ x + b ≤ 0

if w ⋅ x + b > 0
(2)

1

1

1

−2 3

00 1

(−2) ∗ 0 + (−2) ∗ 0 + 3 = 3 ∗

01 10 1 11
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produces output , since  is negative.

And so our perceptron implements a NAND gate!

The NAND example shows that we can use perceptrons to compute

simple logical functions. In fact, we can use networks of

perceptrons to compute any logical function at all. The reason is

that the NAND gate is universal for computation, that is, we can build

any computation up out of NAND gates. For example, we can use

NAND gates to build a circuit which adds two bits,  and . This

requires computing the bitwise sum, , as well as a carry bit

which is set to  when both  and  are , i.e., the carry bit is just

the bitwise product :

To get an equivalent network of perceptrons we replace all the NAND

gates by perceptrons with two inputs, each with weight , and an

overall bias of . Here's the resulting network. Note that I've moved

the perceptron corresponding to the bottom right NAND gate a little,

just to make it easier to draw the arrows on the diagram:

One notable aspect of this network of perceptrons is that the output

from the leftmost perceptron is used twice as input to the

bottommost perceptron. When I defined the perceptron model I

didn't say whether this kind of double-output-to-the-same-place

was allowed. Actually, it doesn't much matter. If we don't want to

allow this kind of thing, then it's possible to simply merge the two

lines, into a single connection with a weight of -4 instead of two

connections with -2 weights. (If you don't find this obvious, you

should stop and prove to yourself that this is equivalent.) With that

change, the network looks as follows, with all unmarked weights

0 (−2) ∗ 1 + (−2) ∗ 1 + 3 = −1

x1 x2

⊕x1 x2

1 x1 x2 1

x1x2

−2

3
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equal to -2, all biases equal to 3, and a single weight of -4, as

marked:

Up to now I've been drawing inputs like  and  as variables

floating to the left of the network of perceptrons. In fact, it's

conventional to draw an extra layer of perceptrons - the input layer

- to encode the inputs:

This notation for input perceptrons, in which we have an output,

but no inputs,

is a shorthand. It doesn't actually mean a perceptron with no

inputs. To see this, suppose we did have a perceptron with no

inputs. Then the weighted sum  would always be zero, and

so the perceptron would output  if , and  if . That is, the

perceptron would simply output a fixed value, not the desired value

( , in the example above). It's better to think of the input

perceptrons as not really being perceptrons at all, but rather special

units which are simply defined to output the desired values, 

.

The adder example demonstrates how a network of perceptrons can

be used to simulate a circuit containing many NAND gates. And

because NAND gates are universal for computation, it follows that

perceptrons are also universal for computation.

The computational universality of perceptrons is simultaneously

reassuring and disappointing. It's reassuring because it tells us that

networks of perceptrons can be as powerful as any other computing

x1 x2

∑j wjxj

1 b > 0 0 b ≤ 0

x1

, , …x1 x2
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device. But it's also disappointing, because it makes it seem as

though perceptrons are merely a new type of NAND gate. That's

hardly big news!

However, the situation is better than this view suggests. It turns out

that we can devise learning algorithms which can automatically

tune the weights and biases of a network of artificial neurons. This

tuning happens in response to external stimuli, without direct

intervention by a programmer. These learning algorithms enable us

to use artificial neurons in a way which is radically different to

conventional logic gates. Instead of explicitly laying out a circuit of

NAND and other gates, our neural networks can simply learn to solve

problems, sometimes problems where it would be extremely

difficult to directly design a conventional circuit.

Sigmoid neurons
Learning algorithms sound terrific. But how can we devise such

algorithms for a neural network? Suppose we have a network of

perceptrons that we'd like to use to learn to solve some problem.

For example, the inputs to the network might be the raw pixel data

from a scanned, handwritten image of a digit. And we'd like the

network to learn weights and biases so that the output from the

network correctly classifies the digit. To see how learning might

work, suppose we make a small change in some weight (or bias) in

the network. What we'd like is for this small change in weight to

cause only a small corresponding change in the output from the

network. As we'll see in a moment, this property will make learning

possible. Schematically, here's what we want (obviously this

network is too simple to do handwriting recognition!):
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If it were true that a small change in a weight (or bias) causes only a

small change in output, then we could use this fact to modify the

weights and biases to get our network to behave more in the

manner we want. For example, suppose the network was

mistakenly classifying an image as an "8" when it should be a "9".

We could figure out how to make a small change in the weights and

biases so the network gets a little closer to classifying the image as a

"9". And then we'd repeat this, changing the weights and biases

over and over to produce better and better output. The network

would be learning.

The problem is that this isn't what happens when our network

contains perceptrons. In fact, a small change in the weights or bias

of any single perceptron in the network can sometimes cause the

output of that perceptron to completely flip, say from  to . That

flip may then cause the behaviour of the rest of the network to

completely change in some very complicated way. So while your "9"

might now be classified correctly, the behaviour of the network on

all the other images is likely to have completely changed in some

hard-to-control way. That makes it difficult to see how to gradually

modify the weights and biases so that the network gets closer to the

desired behaviour. Perhaps there's some clever way of getting

around this problem. But it's not immediately obvious how we can

get a network of perceptrons to learn.

We can overcome this problem by introducing a new type of

artificial neuron called a sigmoid neuron. Sigmoid neurons are

similar to perceptrons, but modified so that small changes in their

weights and bias cause only a small change in their output. That's

the crucial fact which will allow a network of sigmoid neurons to

learn.

Okay, let me describe the sigmoid neuron. We'll depict sigmoid

neurons in the same way we depicted perceptrons:

Just like a perceptron, the sigmoid neuron has inputs, .

But instead of being just  or , these inputs can also take on any

0 1

, , …x1 x2

0 1
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values between  and . So, for instance,  is a valid input for

a sigmoid neuron. Also just like a perceptron, the sigmoid neuron

has weights for each input, , and an overall bias, . But the

output is not  or . Instead, it's , where  is called the

sigmoid function*, and is defined by:

To put it all a little more explicitly, the output of a sigmoid neuron

with inputs , weights , and bias  is

At first sight, sigmoid neurons appear very different to perceptrons.

The algebraic form of the sigmoid function may seem opaque and

forbidding if you're not already familiar with it. In fact, there are

many similarities between perceptrons and sigmoid neurons, and

the algebraic form of the sigmoid function turns out to be more of a

technical detail than a true barrier to understanding.

To understand the similarity to the perceptron model, suppose 

 is a large positive number. Then  and so 

. In other words, when  is large and positive,

the output from the sigmoid neuron is approximately , just as it

would have been for a perceptron. Suppose on the other hand that 

 is very negative. Then , and . So

when  is very negative, the behaviour of a sigmoid

neuron also closely approximates a perceptron. It's only when 

 is of modest size that there's much deviation from the

perceptron model.

What about the algebraic form of ? How can we understand that?

In fact, the exact form of  isn't so important - what really matters

is the shape of the function when plotted. Here's the shape:

0 1 0.638 …

, , …w1 w2 b

0 1 σ(w ⋅ x + b) σ

*Incidentally,  is sometimes called the logistic

function, and this new class of neurons called

logistic neurons. It's useful to remember this

terminology, since these terms are used by many

people working with neural nets. However, we'll

stick with the sigmoid terminology.

σ

σ(z) ≡ .
1

1 + e−z
(3)

, , …x1 x2 , , …w1 w2 b

.
1

1 + exp(− − b)∑j wjxj

(4)

z ≡ w ⋅ x + b ≈ 0e−z

σ(z) ≈ 1 z = w ⋅ x + b

1

z = w ⋅ x + b → ∞e−z σ(z) ≈ 0

z = w ⋅ x + b

w ⋅ x + b

σ

σ
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sigmoid function

This shape is a smoothed out version of a step function:

-4 -3 -2 -1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

z

step function

If  had in fact been a step function, then the sigmoid neuron would

be a perceptron, since the output would be  or  depending on

whether  was positive or negative*. By using the actual 

function we get, as already implied above, a smoothed out

perceptron. Indeed, it's the smoothness of the  function that is the

crucial fact, not its detailed form. The smoothness of  means that

small changes  in the weights and  in the bias will produce a

small change  in the output from the neuron. In fact,

calculus tells us that  is well approximated by

where the sum is over all the weights, , and  and 

 denote partial derivatives of the  with respect to 

 and , respectively. Don't panic if you're not comfortable with

partial derivatives! While the expression above looks complicated,

with all the partial derivatives, it's actually saying something very

simple (and which is very good news):  is a linear function

of the changes  and  in the weights and bias. This linearity

makes it easy to choose small changes in the weights and biases to

σ

1 0

w ⋅ x + b
*Actually, when  the perceptron

outputs , while the step function outputs . So,

strictly speaking, we'd need to modify the step

function at that one point. But you get the idea.

w ⋅ x + b = 0

0 1
σ

σ

σ

Δwj Δb

Δoutput

Δoutput

Δoutput ≈ Δ + Δb,∑
j

∂ output

∂wj

wj

∂ output

∂b
(5)

wj ∂ output/∂wj

∂ output/∂b output

wj b

Δoutput

Δwj Δb
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achieve any desired small change in the output. So while sigmoid

neurons have much of the same qualitative behaviour as

perceptrons, they make it much easier to figure out how changing

the weights and biases will change the output.

If it's the shape of  which really matters, and not its exact form,

then why use the particular form used for  in Equation (3)? In fact,

later in the book we will occasionally consider neurons where the

output is  for some other activation function . The

main thing that changes when we use a different activation function

is that the particular values for the partial derivatives in Equation

(5) change. It turns out that when we compute those partial

derivatives later, using  will simplify the algebra, simply because

exponentials have lovely properties when differentiated. In any

case,  is commonly-used in work on neural nets, and is the

activation function we'll use most often in this book.

How should we interpret the output from a sigmoid neuron?

Obviously, one big difference between perceptrons and sigmoid

neurons is that sigmoid neurons don't just output  or . They can

have as output any real number between  and , so values such as 

 and  are legitimate outputs. This can be useful, for

example, if we want to use the output value to represent the average

intensity of the pixels in an image input to a neural network. But

sometimes it can be a nuisance. Suppose we want the output from

the network to indicate either "the input image is a 9" or "the input

image is not a 9". Obviously, it'd be easiest to do this if the output

was a  or a , as in a perceptron. But in practice we can set up a

convention to deal with this, for example, by deciding to interpret

any output of at least  as indicating a "9", and any output less

than  as indicating "not a 9". I'll always explicitly state when

we're using such a convention, so it shouldn't cause any confusion.

Exercises

Sigmoid neurons simulating perceptrons, part I   

Suppose we take all the weights and biases in a network of

perceptrons, and multiply them by a positive constant, .

Show that the behaviour of the network doesn't change.

Sigmoid neurons simulating perceptrons, part II  

Suppose we have the same setup as the last problem - a

σ

σ

f(w ⋅ x + b) f(⋅)

σ

σ

0 1

0 1

0.173 … 0.689 …

0 1

0.5

0.5

c > 0
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network of perceptrons. Suppose also that the overall input to

the network of perceptrons has been chosen. We won't need

the actual input value, we just need the input to have been

fixed. Suppose the weights and biases are such that 

 for the input  to any particular perceptron in the

network. Now replace all the perceptrons in the network by

sigmoid neurons, and multiply the weights and biases by a

positive constant . Show that in the limit as  the

behaviour of this network of sigmoid neurons is exactly the

same as the network of perceptrons. How can this fail when 

 for one of the perceptrons?

The architecture of neural networks
In the next section I'll introduce a neural network that can do a

pretty good job classifying handwritten digits. In preparation for

that, it helps to explain some terminology that lets us name

different parts of a network. Suppose we have the network:

As mentioned earlier, the leftmost layer in this network is called the

input layer, and the neurons within the layer are called input

neurons. The rightmost or output layer contains the output

neurons, or, as in this case, a single output neuron. The middle

layer is called a hidden layer, since the neurons in this layer are

neither inputs nor outputs. The term "hidden" perhaps sounds a

little mysterious - the first time I heard the term I thought it must

have some deep philosophical or mathematical significance - but it

really means nothing more than "not an input or an output". The

network above has just a single hidden layer, but some networks

have multiple hidden layers. For example, the following four-layer

network has two hidden layers:

w ⋅ x + b ≠ 0 x

c > 0 c → ∞

w ⋅ x + b = 0
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Somewhat confusingly, and for historical reasons, such multiple

layer networks are sometimes called multilayer perceptrons or

MLPs, despite being made up of sigmoid neurons, not perceptrons.

I'm not going to use the MLP terminology in this book, since I think

it's confusing, but wanted to warn you of its existence.

The design of the input and output layers in a network is often

straightforward. For example, suppose we're trying to determine

whether a handwritten image depicts a "9" or not. A natural way to

design the network is to encode the intensities of the image pixels

into the input neurons. If the image is a  by  greyscale image,

then we'd have  input neurons, with the intensities

scaled appropriately between  and . The output layer will contain

just a single neuron, with output values of less than  indicating

"input image is not a 9", and values greater than  indicating

"input image is a 9 ".

While the design of the input and output layers of a neural network

is often straightforward, there can be quite an art to the design of

the hidden layers. In particular, it's not possible to sum up the

design process for the hidden layers with a few simple rules of

thumb. Instead, neural networks researchers have developed many

design heuristics for the hidden layers, which help people get the

behaviour they want out of their nets. For example, such heuristics

can be used to help determine how to trade off the number of

hidden layers against the time required to train the network. We'll

meet several such design heuristics later in this book.

Up to now, we've been discussing neural networks where the output

from one layer is used as input to the next layer. Such networks are

called feedforward neural networks. This means there are no loops

64 64

4, 096 = 64 × 64

0 1

0.5
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in the network - information is always fed forward, never fed back.

If we did have loops, we'd end up with situations where the input to

the  function depended on the output. That'd be hard to make

sense of, and so we don't allow such loops.

However, there are other models of artificial neural networks in

which feedback loops are possible. These models are called

recurrent neural networks. The idea in these models is to have

neurons which fire for some limited duration of time, before

becoming quiescent. That firing can stimulate other neurons, which

may fire a little while later, also for a limited duration. That causes

still more neurons to fire, and so over time we get a cascade of

neurons firing. Loops don't cause problems in such a model, since a

neuron's output only affects its input at some later time, not

instantaneously.

Recurrent neural nets have been less influential than feedforward

networks, in part because the learning algorithms for recurrent nets

are (at least to date) less powerful. But recurrent networks are still

extremely interesting. They're much closer in spirit to how our

brains work than feedforward networks. And it's possible that

recurrent networks can solve important problems which can only be

solved with great difficulty by feedforward networks. However, to

limit our scope, in this book we're going to concentrate on the more

widely-used feedforward networks.

A simple network to classify
handwritten digits
Having defined neural networks, let's return to handwriting

recognition. We can split the problem of recognizing handwritten

digits into two sub-problems. First, we'd like a way of breaking an

image containing many digits into a sequence of separate images,

each containing a single digit. For example, we'd like to break the

image

into six separate images,

σ

http://en.wikipedia.org/wiki/Recurrent_neural_network
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We humans solve this segmentation problem with ease, but it's

challenging for a computer program to correctly break up the

image. Once the image has been segmented, the program then

needs to classify each individual digit. So, for instance, we'd like our

program to recognize that the first digit above,

is a 5.

We'll focus on writing a program to solve the second problem, that

is, classifying individual digits. We do this because it turns out that

the segmentation problem is not so difficult to solve, once you have

a good way of classifying individual digits. There are many

approaches to solving the segmentation problem. One approach is

to trial many different ways of segmenting the image, using the

individual digit classifier to score each trial segmentation. A trial

segmentation gets a high score if the individual digit classifier is

confident of its classification in all segments, and a low score if the

classifier is having a lot of trouble in one or more segments. The

idea is that if the classifier is having trouble somewhere, then it's

probably having trouble because the segmentation has been chosen

incorrectly. This idea and other variations can be used to solve the

segmentation problem quite well. So instead of worrying about

segmentation we'll concentrate on developing a neural network

which can solve the more interesting and difficult problem, namely,

recognizing individual handwritten digits.

To recognize individual digits we will use a three-layer neural

network:
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The input layer of the network contains neurons encoding the

values of the input pixels. As discussed in the next section, our

training data for the network will consist of many  by  pixel

images of scanned handwritten digits, and so the input layer

contains  neurons. For simplicity I've omitted most of

the  input neurons in the diagram above. The input pixels are

greyscale, with a value of  representing white, a value of 

representing black, and in between values representing gradually

darkening shades of grey.

The second layer of the network is a hidden layer. We denote the

number of neurons in this hidden layer by , and we'll experiment

with different values for . The example shown illustrates a small

hidden layer, containing just  neurons.

The output layer of the network contains 10 neurons. If the first

neuron fires, i.e., has an output , then that will indicate that the

network thinks the digit is a . If the second neuron fires then that

will indicate that the network thinks the digit is a . And so on. A

little more precisely, we number the output neurons from  through

, and figure out which neuron has the highest activation value. If

that neuron is, say, neuron number , then our network will guess

that the input digit was a . And so on for the other output neurons.

You might wonder why we use  output neurons. After all, the goal

of the network is to tell us which digit ( ) corresponds to

the input image. A seemingly natural way of doing that is to use just

28 28

784 = 28 × 28
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 output neurons, treating each neuron as taking on a binary value,

depending on whether the neuron's output is closer to  or to .

Four neurons are enough to encode the answer, since  is

more than the 10 possible values for the input digit. Why should our

network use  neurons instead? Isn't that inefficient? The ultimate

justification is empirical: we can try out both network designs, and

it turns out that, for this particular problem, the network with 

output neurons learns to recognize digits better than the network

with  output neurons. But that leaves us wondering why using 

output neurons works better. Is there some heuristic that would tell

us in advance that we should use the -output encoding instead of

the -output encoding?

To understand why we do this, it helps to think about what the

neural network is doing from first principles. Consider first the case

where we use  output neurons. Let's concentrate on the first

output neuron, the one that's trying to decide whether or not the

digit is a . It does this by weighing up evidence from the hidden

layer of neurons. What are those hidden neurons doing? Well, just

suppose for the sake of argument that the first neuron in the hidden

layer detects whether or not an image like the following is present:

It can do this by heavily weighting input pixels which overlap with

the image, and only lightly weighting the other inputs. In a similar

way, let's suppose for the sake of argument that the second, third,

and fourth neurons in the hidden layer detect whether or not the

following images are present:

As you may have guessed, these four images together make up the 

image that we saw in the line of digits shown earlier:

4
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So if all four of these hidden neurons are firing then we can

conclude that the digit is a . Of course, that's not the only sort of

evidence we can use to conclude that the image was a  - we could

legitimately get a  in many other ways (say, through translations of

the above images, or slight distortions). But it seems safe to say that

at least in this case we'd conclude that the input was a .

Supposing the neural network functions in this way, we can give a

plausible explanation for why it's better to have  outputs from the

network, rather than . If we had  outputs, then the first output

neuron would be trying to decide what the most significant bit of

the digit was. And there's no easy way to relate that most significant

bit to simple shapes like those shown above. It's hard to imagine

that there's any good historical reason the component shapes of the

digit will be closely related to (say) the most significant bit in the

output.

Now, with all that said, this is all just a heuristic. Nothing says that

the three-layer neural network has to operate in the way I

described, with the hidden neurons detecting simple component

shapes. Maybe a clever learning algorithm will find some

assignment of weights that lets us use only  output neurons. But as

a heuristic the way of thinking I've described works pretty well, and

can save you a lot of time in designing good neural network

architectures.

Exercise

There is a way of determining the bitwise representation of a

digit by adding an extra layer to the three-layer network above.

The extra layer converts the output from the previous layer into

a binary representation, as illustrated in the figure below. Find

a set of weights and biases for the new output layer. Assume

that the first  layers of neurons are such that the correct

output in the third layer (i.e., the old output layer) has

activation at least , and incorrect outputs have activation

less than .
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Learning with gradient descent
Now that we have a design for our neural network, how can it learn

to recognize digits? The first thing we'll need is a data set to learn

from - a so-called training data set. We'll use the MNIST data set,

which contains tens of thousands of scanned images of handwritten

digits, together with their correct classifications. MNIST's name

comes from the fact that it is a modified subset of two data sets

collected by NIST, the United States' National Institute of

Standards and Technology. Here's a few images from MNIST:

As you can see, these digits are, in fact, the same as those shown at

the beginning of this chapter as a challenge to recognize. Of course,

when testing our network we'll ask it to recognize images which

aren't in the training set!

The MNIST data comes in two parts. The first part contains 60,000

images to be used as training data. These images are scanned

handwriting samples from 250 people, half of whom were US

Census Bureau employees, and half of whom were high school

students. The images are greyscale and 28 by 28 pixels in size. The

second part of the MNIST data set is 10,000 images to be used as

test data. Again, these are 28 by 28 greyscale images. We'll use the

test data to evaluate how well our neural network has learned to

recognize digits. To make this a good test of performance, the test

data was taken from a different set of 250 people than the original

training data (albeit still a group split between Census Bureau

employees and high school students). This helps give us confidence

http://yann.lecun.com/exdb/mnist/
http://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
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that our system can recognize digits from people whose writing it

didn't see during training.

We'll use the notation  to denote a training input. It'll be

convenient to regard each training input  as a -

dimensional vector. Each entry in the vector represents the grey

value for a single pixel in the image. We'll denote the corresponding

desired output by , where  is a -dimensional vector. For

example, if a particular training image, , depicts a , then 

 is the desired output from the

network. Note that  here is the transpose operation, turning a row

vector into an ordinary (column) vector.

What we'd like is an algorithm which lets us find weights and biases

so that the output from the network approximates  for all

training inputs . To quantify how well we're achieving this goal we

define a cost function*:

Here,  denotes the collection of all weights in the network,  all the

biases,  is the total number of training inputs,  is the vector of

outputs from the network when  is input, and the sum is over all

training inputs, . Of course, the output  depends on ,  and ,

but to keep the notation simple I haven't explicitly indicated this

dependence. The notation  just denotes the usual length

function for a vector . We'll call  the quadratic cost function; it's

also sometimes known as the mean squared error or just MSE.

Inspecting the form of the quadratic cost function, we see that 

 is non-negative, since every term in the sum is non-

negative. Furthermore, the cost  becomes small, i.e., 

, precisely when  is approximately equal to the

output, , for all training inputs, . So our training algorithm has

done a good job if it can find weights and biases so that .

By contrast, it's not doing so well when  is large - that would

mean that  is not close to the output  for a large number of

inputs. So the aim of our training algorithm will be to minimize the

cost  as a function of the weights and biases. In other words,

we want to find a set of weights and biases which make the cost as

small as possible. We'll do that using an algorithm known as

gradient descent.

x

x 28 × 28 = 784

y = y(x) y 10

x 6

y(x) = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0)T

T

y(x)

x

*Sometimes referred to as a loss or objective

function. We use the term cost function

throughout this book, but you should note the

other terminology, since it's often used in

research papers and other discussions of neural

networks.

C(w, b) ≡ ∥y(x) − a .
1

2n
∑

x

∥2 (6)

w b

n a

x

x a x w b

∥v∥

v C

C(w, b)

C(w, b)

C(w, b) ≈ 0 y(x)

a x

C(w, b) ≈ 0

C(w, b)

y(x) a

C(w, b)



22/08/2018 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 23/50

Why introduce the quadratic cost? After all, aren't we primarily

interested in the number of images correctly classified by the

network? Why not try to maximize that number directly, rather

than minimizing a proxy measure like the quadratic cost? The

problem with that is that the number of images correctly classified

is not a smooth function of the weights and biases in the network.

For the most part, making small changes to the weights and biases

won't cause any change at all in the number of training images

classified correctly. That makes it difficult to figure out how to

change the weights and biases to get improved performance. If we

instead use a smooth cost function like the quadratic cost it turns

out to be easy to figure out how to make small changes in the

weights and biases so as to get an improvement in the cost. That's

why we focus first on minimizing the quadratic cost, and only after

that will we examine the classification accuracy.

Even given that we want to use a smooth cost function, you may still

wonder why we choose the quadratic function used in Equation (6).

Isn't this a rather ad hoc choice? Perhaps if we chose a different

cost function we'd get a totally different set of minimizing weights

and biases? This is a valid concern, and later we'll revisit the cost

function, and make some modifications. However, the quadratic

cost function of Equation (6) works perfectly well for understanding

the basics of learning in neural networks, so we'll stick with it for

now.

Recapping, our goal in training a neural network is to find weights

and biases which minimize the quadratic cost function . This

is a well-posed problem, but it's got a lot of distracting structure as

currently posed - the interpretation of  and  as weights and

biases, the  function lurking in the background, the choice of

network architecture, MNIST, and so on. It turns out that we can

understand a tremendous amount by ignoring most of that

structure, and just concentrating on the minimization aspect. So for

now we're going to forget all about the specific form of the cost

function, the connection to neural networks, and so on. Instead,

we're going to imagine that we've simply been given a function of

many variables and we want to minimize that function. We're going

to develop a technique called gradient descent which can be used to

solve such minimization problems. Then we'll come back to the

specific function we want to minimize for neural networks.

C(w, b)

w b

σ
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Okay, let's suppose we're trying to minimize some function, .

This could be any real-valued function of many variables, 

. Note that I've replaced the  and  notation by  to

emphasize that this could be any function - we're not specifically

thinking in the neural networks context any more. To minimize 

 it helps to imagine  as a function of just two variables, which

we'll call  and :

What we'd like is to find where  achieves its global minimum.

Now, of course, for the function plotted above, we can eyeball the

graph and find the minimum. In that sense, I've perhaps shown

slightly too simple a function! A general function, , may be a

complicated function of many variables, and it won't usually be

possible to just eyeball the graph to find the minimum.

One way of attacking the problem is to use calculus to try to find the

minimum analytically. We could compute derivatives and then try

using them to find places where  is an extremum. With some luck

that might work when  is a function of just one or a few variables.

But it'll turn into a nightmare when we have many more variables.

And for neural networks we'll often want far more variables - the

biggest neural networks have cost functions which depend on

billions of weights and biases in an extremely complicated way.

Using calculus to minimize that just won't work!

(After asserting that we'll gain insight by imagining  as a function

of just two variables, I've turned around twice in two paragraphs

and said, "hey, but what if it's a function of many more than two

C(v)

v = , , …v1 v2 w b v

C(v) C

v1 v2

C

C

C

C

C



22/08/2018 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 25/50

variables?" Sorry about that. Please believe me when I say that it

really does help to imagine  as a function of two variables. It just

happens that sometimes that picture breaks down, and the last two

paragraphs were dealing with such breakdowns. Good thinking

about mathematics often involves juggling multiple intuitive

pictures, learning when it's appropriate to use each picture, and

when it's not.)

Okay, so calculus doesn't work. Fortunately, there is a beautiful

analogy which suggests an algorithm which works pretty well. We

start by thinking of our function as a kind of a valley. If you squint

just a little at the plot above, that shouldn't be too hard. And we

imagine a ball rolling down the slope of the valley. Our everyday

experience tells us that the ball will eventually roll to the bottom of

the valley. Perhaps we can use this idea as a way to find a minimum

for the function? We'd randomly choose a starting point for an

(imaginary) ball, and then simulate the motion of the ball as it

rolled down to the bottom of the valley. We could do this simulation

simply by computing derivatives (and perhaps some second

derivatives) of  - those derivatives would tell us everything we

need to know about the local "shape" of the valley, and therefore

how our ball should roll.

Based on what I've just written, you might suppose that we'll be

trying to write down Newton's equations of motion for the ball,

considering the effects of friction and gravity, and so on. Actually,

we're not going to take the ball-rolling analogy quite that seriously -

we're devising an algorithm to minimize , not developing an

accurate simulation of the laws of physics! The ball's-eye view is

meant to stimulate our imagination, not constrain our thinking. So

rather than get into all the messy details of physics, let's simply ask

ourselves: if we were declared God for a day, and could make up our

own laws of physics, dictating to the ball how it should roll, what

law or laws of motion could we pick that would make it so the ball

always rolled to the bottom of the valley?

To make this question more precise, let's think about what happens

when we move the ball a small amount  in the  direction, and

a small amount  in the  direction. Calculus tells us that 

changes as follows:

C

C

C

Δv1 v1

Δv2 v2 C
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We're going to find a way of choosing  and  so as to make 

 negative; i.e., we'll choose them so the ball is rolling down into

the valley. To figure out how to make such a choice it helps to define

 to be the vector of changes in , , where  is

again the transpose operation, turning row vectors into column

vectors. We'll also define the gradient of  to be the vector of

partial derivatives, . We denote the gradient vector by 

, i.e.:

In a moment we'll rewrite the change  in terms of  and the

gradient, . Before getting to that, though, I want to clarify

something that sometimes gets people hung up on the gradient.

When meeting the  notation for the first time, people sometimes

wonder how they should think about the  symbol. What, exactly,

does  mean? In fact, it's perfectly fine to think of  as a single

mathematical object - the vector defined above - which happens to

be written using two symbols. In this point of view,  is just a piece

of notational flag-waving, telling you "hey,  is a gradient vector".

There are more advanced points of view where  can be viewed as

an independent mathematical entity in its own right (for example,

as a differential operator), but we won't need such points of view.

With these definitions, the expression (7) for  can be rewritten

as

This equation helps explain why  is called the gradient vector: 

 relates changes in  to changes in , just as we'd expect

something called a gradient to do. But what's really exciting about

the equation is that it lets us see how to choose  so as to make 

 negative. In particular, suppose we choose

where  is a small, positive parameter (known as the learning rate).

Then Equation (9) tells us that .

Because , this guarantees that , i.e.,  will

ΔC ≈ Δ + Δ .
∂C

∂v1
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∂v2
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always decrease, never increase, if we change  according to the

prescription in (10). (Within, of course, the limits of the

approximation in Equation (9)). This is exactly the property we

wanted! And so we'll take Equation (10) to define the "law of

motion" for the ball in our gradient descent algorithm. That is, we'll

use Equation (10) to compute a value for , then move the ball's

position  by that amount:

Then we'll use this update rule again, to make another move. If we

keep doing this, over and over, we'll keep decreasing  until - we

hope - we reach a global minimum.

Summing up, the way the gradient descent algorithm works is to

repeatedly compute the gradient , and then to move in the

opposite direction, "falling down" the slope of the valley. We can

visualize it like this:

Notice that with this rule gradient descent doesn't reproduce real

physical motion. In real life a ball has momentum, and that

momentum may allow it to roll across the slope, or even

(momentarily) roll uphill. It's only after the effects of friction set in

that the ball is guaranteed to roll down into the valley. By contrast,

our rule for choosing  just says "go down, right now". That's still

a pretty good rule for finding the minimum!

To make gradient descent work correctly, we need to choose the

learning rate  to be small enough that Equation (9) is a good

v

Δv

v
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approximation. If we don't, we might end up with , which

obviously would not be good! At the same time, we don't want  to

be too small, since that will make the changes  tiny, and thus the

gradient descent algorithm will work very slowly. In practical

implementations,  is often varied so that Equation (9) remains a

good approximation, but the algorithm isn't too slow. We'll see later

how this works.

I've explained gradient descent when  is a function of just two

variables. But, in fact, everything works just as well even when  is

a function of many more variables. Suppose in particular that  is a

function of  variables, . Then the change  in 

produced by a small change  is

where the gradient  is the vector

Just as for the two variable case, we can choose

and we're guaranteed that our (approximate) expression (12) for 

 will be negative. This gives us a way of following the gradient to

a minimum, even when  is a function of many variables, by

repeatedly applying the update rule

You can think of this update rule as defining the gradient descent

algorithm. It gives us a way of repeatedly changing the position  in

order to find a minimum of the function . The rule doesn't always

work - several things can go wrong and prevent gradient descent

from finding the global minimum of , a point we'll return to

explore in later chapters. But, in practice gradient descent often

works extremely well, and in neural networks we'll find that it's a

powerful way of minimizing the cost function, and so helping the

net learn.

Indeed, there's even a sense in which gradient descent is the

optimal strategy for searching for a minimum. Let's suppose that

we're trying to make a move  in position so as to decrease  as
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much as possible. This is equivalent to minimizing .

We'll constrain the size of the move so that  for some small

fixed . In other words, we want a move that is a small step of a

fixed size, and we're trying to find the movement direction which

decreases  as much as possible. It can be proved that the choice of 

 which minimizes  is , where  is

determined by the size constraint . So gradient descent

can be viewed as a way of taking small steps in the direction which

does the most to immediately decrease .

Exercises

Prove the assertion of the last paragraph. Hint: If you're not

already familiar with the Cauchy-Schwarz inequality, you may

find it helpful to familiarize yourself with it.

I explained gradient descent when  is a function of two

variables, and when it's a function of more than two variables.

What happens when  is a function of just one variable? Can

you provide a geometric interpretation of what gradient

descent is doing in the one-dimensional case?

People have investigated many variations of gradient descent,

including variations that more closely mimic a real physical ball.

These ball-mimicking variations have some advantages, but also

have a major disadvantage: it turns out to be necessary to compute

second partial derivatives of , and this can be quite costly. To see

why it's costly, suppose we want to compute all the second partial

derivatives . If there are a million such  variables then

we'd need to compute something like a trillion (i.e., a million

squared) second partial derivatives*! That's going to be

computationally costly. With that said, there are tricks for avoiding

this kind of problem, and finding alternatives to gradient descent is

an active area of investigation. But in this book we'll use gradient

descent (and variations) as our main approach to learning in neural

networks.

How can we apply gradient descent to learn in a neural network?

The idea is to use gradient descent to find the weights  and biases

 which minimize the cost in Equation (6). To see how this works,

let's restate the gradient descent update rule, with the weights and

biases replacing the variables . In other words, our "position" now

ΔC ≈ ∇C ⋅ Δv

∥Δv∥ = ϵ

ϵ > 0

C

Δv ∇C ⋅ Δv Δv = −η∇C η = ϵ/∥∇C∥

∥Δv∥ = ϵ

C

C

C

C

C/∂ ∂∂ 2 vj vk vj

*Actually, more like half a trillion, since

. Still, you get the

point.
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has components  and , and the gradient vector  has

corresponding components  and . Writing out the

gradient descent update rule in terms of components, we have

By repeatedly applying this update rule we can "roll down the hill",

and hopefully find a minimum of the cost function. In other words,

this is a rule which can be used to learn in a neural network.

There are a number of challenges in applying the gradient descent

rule. We'll look into those in depth in later chapters. But for now I

just want to mention one problem. To understand what the problem

is, let's look back at the quadratic cost in Equation (6). Notice that

this cost function has the form , that is, it's an average

over costs  for individual training examples. In

practice, to compute the gradient  we need to compute the

gradients  separately for each training input, , and then

average them, . Unfortunately, when the number

of training inputs is very large this can take a long time, and

learning thus occurs slowly.

An idea called stochastic gradient descent can be used to speed up

learning. The idea is to estimate the gradient  by computing 

 for a small sample of randomly chosen training inputs. By

averaging over this small sample it turns out that we can quickly get

a good estimate of the true gradient , and this helps speed up

gradient descent, and thus learning.

To make these ideas more precise, stochastic gradient descent

works by randomly picking out a small number  of randomly

chosen training inputs. We'll label those random training inputs 

, and refer to them as a mini-batch. Provided the

sample size  is large enough we expect that the average value of

the  will be roughly equal to the average over all , that is,

where the second sum is over the entire set of training data.

Swapping sides we get
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confirming that we can estimate the overall gradient by computing

gradients just for the randomly chosen mini-batch.

To connect this explicitly to learning in neural networks, suppose 

 and  denote the weights and biases in our neural network.

Then stochastic gradient descent works by picking out a randomly

chosen mini-batch of training inputs, and training with those,

where the sums are over all the training examples  in the current

mini-batch. Then we pick out another randomly chosen mini-batch

and train with those. And so on, until we've exhausted the training

inputs, which is said to complete an epoch of training. At that point

we start over with a new training epoch.

Incidentally, it's worth noting that conventions vary about scaling of

the cost function and of mini-batch updates to the weights and

biases. In Equation (6) we scaled the overall cost function by a

factor . People sometimes omit the , summing over the costs of

individual training examples instead of averaging. This is

particularly useful when the total number of training examples isn't

known in advance. This can occur if more training data is being

generated in real time, for instance. And, in a similar way, the mini-

batch update rules (20) and (21) sometimes omit the  term out

the front of the sums. Conceptually this makes little difference,

since it's equivalent to rescaling the learning rate . But when doing

detailed comparisons of different work it's worth watching out for.

We can think of stochastic gradient descent as being like political

polling: it's much easier to sample a small mini-batch than it is to

apply gradient descent to the full batch, just as carrying out a poll is

easier than running a full election. For example, if we have a

training set of size , as in MNIST, and choose a mini-

batch size of (say) , this means we'll get a factor of 

speedup in estimating the gradient! Of course, the estimate won't be

perfect - there will be statistical fluctuations - but it doesn't need to
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be perfect: all we really care about is moving in a general direction

that will help decrease , and that means we don't need an exact

computation of the gradient. In practice, stochastic gradient

descent is a commonly used and powerful technique for learning in

neural networks, and it's the basis for most of the learning

techniques we'll develop in this book.

Exercise

An extreme version of gradient descent is to use a mini-batch

size of just 1. That is, given a training input, , we update our

weights and biases according to the rules 

 and .

Then we choose another training input, and update the weights

and biases again. And so on, repeatedly. This procedure is

known as online, on-line, or incremental learning. In online

learning, a neural network learns from just one training input

at a time (just as human beings do). Name one advantage and

one disadvantage of online learning, compared to stochastic

gradient descent with a mini-batch size of, say, .

Let me conclude this section by discussing a point that sometimes

bugs people new to gradient descent. In neural networks the cost 

is, of course, a function of many variables - all the weights and

biases - and so in some sense defines a surface in a very high-

dimensional space. Some people get hung up thinking: "Hey, I have

to be able to visualize all these extra dimensions". And they may

start to worry: "I can't think in four dimensions, let alone five (or

five million)". Is there some special ability they're missing, some

ability that "real" supermathematicians have? Of course, the answer

is no. Even most professional mathematicians can't visualize four

dimensions especially well, if at all. The trick they use, instead, is to

develop other ways of representing what's going on. That's exactly

what we did above: we used an algebraic (rather than visual)

representation of  to figure out how to move so as to decrease .

People who are good at thinking in high dimensions have a mental

library containing many different techniques along these lines; our

algebraic trick is just one example. Those techniques may not have

the simplicity we're accustomed to when visualizing three

dimensions, but once you build up a library of such techniques, you

can get pretty good at thinking in high dimensions. I won't go into

C
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more detail here, but if you're interested then you may enjoy

reading this discussion of some of the techniques professional

mathematicians use to think in high dimensions. While some of the

techniques discussed are quite complex, much of the best content is

intuitive and accessible, and could be mastered by anyone.

Implementing our network to classify
digits
Alright, let's write a program that learns how to recognize

handwritten digits, using stochastic gradient descent and the

MNIST training data. We'll do this with a short Python (2.7)

program, just 74 lines of code! The first thing we need is to get the

MNIST data. If you're a git user then you can obtain the data by

cloning the code repository for this book,

git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git 

If you don't use git then you can download the data and code here.

Incidentally, when I described the MNIST data earlier, I said it was

split into 60,000 training images, and 10,000 test images. That's

the official MNIST description. Actually, we're going to split the

data a little differently. We'll leave the test images as is, but split the

60,000-image MNIST training set into two parts: a set of 50,000

images, which we'll use to train our neural network, and a separate

10,000 image validation set. We won't use the validation data in

this chapter, but later in the book we'll find it useful in figuring out

how to set certain hyper-parameters of the neural network - things

like the learning rate, and so on, which aren't directly selected by

our learning algorithm. Although the validation data isn't part of

the original MNIST specification, many people use MNIST in this

fashion, and the use of validation data is common in neural

networks. When I refer to the "MNIST training data" from now on,

I'll be referring to our 50,000 image data set, not the original

60,000 image data set*.

Apart from the MNIST data we also need a Python library called

Numpy, for doing fast linear algebra. If you don't already have

Numpy installed, you can get it here.

*As noted earlier, the MNIST data set is based

on two data sets collected by NIST, the United

States' National Institute of Standards and

Technology. To construct MNIST the NIST data

sets were stripped down and put into a more

convenient format by Yann LeCun, Corinna

Cortes, and Christopher J. C. Burges. See this

link for more details. The data set in my

repository is in a form that makes it easy to load

and manipulate the MNIST data in Python. I

obtained this particular form of the data from

http://mathoverflow.net/questions/25983/intuitive-crutches-for-higher-dimensional-thinking
https://github.com/mnielsen/neural-networks-and-deep-learning/archive/master.zip
http://numpy.org/
http://www.scipy.org/install.html
http://yann.lecun.com/exdb/mnist/
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Let me explain the core features of the neural networks code, before

giving a full listing, below. The centerpiece is a Network class, which

we use to represent a neural network. Here's the code we use to

initialize a Network object:

class Network(object): 

 

    def __init__(self, sizes): 

        self.num_layers = len(sizes) 

        self.sizes = sizes 

        self.biases = [np.random.randn(y, 1) for y in sizes[1:]] 

        self.weights = [np.random.randn(y, x)  

                        for x, y in zip(sizes[:-1], sizes[1:])] 

In this code, the list sizes contains the number of neurons in the

respective layers. So, for example, if we want to create a Network

object with 2 neurons in the first layer, 3 neurons in the second

layer, and 1 neuron in the final layer, we'd do this with the code:

net = Network([2, 3, 1]) 

The biases and weights in the Network object are all initialized

randomly, using the Numpy np.random.randn function to generate

Gaussian distributions with mean  and standard deviation . This

random initialization gives our stochastic gradient descent

algorithm a place to start from. In later chapters we'll find better

ways of initializing the weights and biases, but this will do for now.

Note that the Network initialization code assumes that the first layer

of neurons is an input layer, and omits to set any biases for those

neurons, since biases are only ever used in computing the outputs

from later layers.

Note also that the biases and weights are stored as lists of Numpy

matrices. So, for example net.weights[1] is a Numpy matrix storing

the weights connecting the second and third layers of neurons. (It's

not the first and second layers, since Python's list indexing starts at

0.) Since net.weights[1] is rather verbose, let's just denote that

matrix . It's a matrix such that  is the weight for the connection

between the  neuron in the second layer, and the  neuron in

the third layer. This ordering of the  and  indices may seem

strange - surely it'd make more sense to swap the  and  indices

around? The big advantage of using this ordering is that it means

that the vector of activations of the third layer of neurons is:

the LISA machine learning laboratory at the

University of Montreal (link).

0 1

w wjk

kth jth

j k

j k

= σ(wa + b).a′ (22)

http://www.deeplearning.net/tutorial/gettingstarted.html
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There's quite a bit going on in this equation, so let's unpack it piece

by piece.  is the vector of activations of the second layer of

neurons. To obtain  we multiply  by the weight matrix , and

add the vector  of biases. We then apply the function 

elementwise to every entry in the vector . (This is called

vectorizing the function .) It's easy to verify that Equation (22)

gives the same result as our earlier rule, Equation (4), for

computing the output of a sigmoid neuron.

Exercise

Write out Equation (22) in component form, and verify that it

gives the same result as the rule (4) for computing the output

of a sigmoid neuron.

With all this in mind, it's easy to write code computing the output

from a Network instance. We begin by defining the sigmoid function:

def sigmoid(z): 

    return 1.0/(1.0+np.exp(-z)) 

Note that when the input z is a vector or Numpy array, Numpy

automatically applies the function sigmoid elementwise, that is, in

vectorized form.

We then add a feedforward method to the Network class, which, given

an input a for the network, returns the corresponding output*. All

the method does is applies Equation (22) for each layer:

    def feedforward(self, a): 

        """Return the output of the network if "a" is input.""" 

        for b, w in zip(self.biases, self.weights): 

            a = sigmoid(np.dot(w, a)+b) 

        return a 

Of course, the main thing we want our Network objects to do is to

learn. To that end we'll give them an SGD method which implements

stochastic gradient descent. Here's the code. It's a little mysterious

in a few places, but I'll break it down below, after the listing.

    def SGD(self, training_data, epochs, mini_batch_size, eta, 

            test_data=None): 

        """Train the neural network using mini-batch stochastic 

        gradient descent.  The "training_data" is a list of tuples 

        "(x, y)" representing the training inputs and the desired 

        outputs.  The other non-optional parameters are 

        self-explanatory.  If "test_data" is provided then the 

        network will be evaluated against the test data after each 

        epoch, and partial progress printed out.  This is useful for 

        tracking progress, but slows things down substantially.""" 

        if test_data: n_test = len(test_data) 

a

a′ a w

b σ

wa + b

σ

*It is assumed that the input a is an (n, 1)

Numpy ndarray, not a (n,) vector. Here, n is the

number of inputs to the network. If you try to

use an (n,) vector as input you'll get strange

results. Although using an (n,) vector appears

the more natural choice, using an (n, 1)

ndarray makes it particularly easy to modify the

code to feedforward multiple inputs at once, and

that is sometimes convenient.
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        n = len(training_data) 

        for j in xrange(epochs): 

            random.shuffle(training_data) 

            mini_batches = [ 

                training_data[k:k+mini_batch_size] 

                for k in xrange(0, n, mini_batch_size)] 

            for mini_batch in mini_batches: 

                self.update_mini_batch(mini_batch, eta) 

            if test_data: 

                print "Epoch {0}: {1} / {2}".format( 

                    j, self.evaluate(test_data), n_test) 

            else: 

                print "Epoch {0} complete".format(j) 

The training_data is a list of tuples (x, y) representing the training

inputs and corresponding desired outputs. The variables epochs and

mini_batch_size are what you'd expect - the number of epochs to

train for, and the size of the mini-batches to use when sampling. eta

is the learning rate, . If the optional argument test_data is

supplied, then the program will evaluate the network after each

epoch of training, and print out partial progress. This is useful for

tracking progress, but slows things down substantially.

The code works as follows. In each epoch, it starts by randomly

shuffling the training data, and then partitions it into mini-batches

of the appropriate size. This is an easy way of sampling randomly

from the training data. Then for each mini_batch we apply a single

step of gradient descent. This is done by the code

self.update_mini_batch(mini_batch, eta), which updates the network

weights and biases according to a single iteration of gradient

descent, using just the training data in mini_batch. Here's the code

for the update_mini_batch method:

    def update_mini_batch(self, mini_batch, eta): 

        """Update the network's weights and biases by applying 

        gradient descent using backpropagation to a single mini batch. 

        The "mini_batch" is a list of tuples "(x, y)", and "eta" 

        is the learning rate.""" 

        nabla_b = [np.zeros(b.shape) for b in self.biases] 

        nabla_w = [np.zeros(w.shape) for w in self.weights] 

        for x, y in mini_batch: 

            delta_nabla_b, delta_nabla_w = self.backprop(x, y) 

            nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)] 

            nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)] 

        self.weights = [w-(eta/len(mini_batch))*nw  

                        for w, nw in zip(self.weights, nabla_w)] 

        self.biases = [b-(eta/len(mini_batch))*nb  

                       for b, nb in zip(self.biases, nabla_b)] 

Most of the work is done by the line

            delta_nabla_b, delta_nabla_w = self.backprop(x, y) 

This invokes something called the backpropagation algorithm,

which is a fast way of computing the gradient of the cost function.

η
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So update_mini_batch works simply by computing these gradients for

every training example in the mini_batch, and then updating

self.weights and self.biases appropriately.

I'm not going to show the code for self.backprop right now. We'll

study how backpropagation works in the next chapter, including the

code for self.backprop. For now, just assume that it behaves as

claimed, returning the appropriate gradient for the cost associated

to the training example x.

Let's look at the full program, including the documentation strings,

which I omitted above. Apart from self.backprop the program is self-

explanatory - all the heavy lifting is done in self.SGD and

self.update_mini_batch, which we've already discussed. The

self.backprop method makes use of a few extra functions to help in

computing the gradient, namely sigmoid_prime, which computes the

derivative of the  function, and self.cost_derivative, which I won't

describe here. You can get the gist of these (and perhaps the details)

just by looking at the code and documentation strings. We'll look at

them in detail in the next chapter. Note that while the program

appears lengthy, much of the code is documentation strings

intended to make the code easy to understand. In fact, the program

contains just 74 lines of non-whitespace, non-comment code. All

the code may be found on GitHub here.

""" 

network.py 

~~~~~~~~~~ 

 

A module to implement the stochastic gradient descent learning 

algorithm for a feedforward neural network.  Gradients are calculated 

using backpropagation.  Note that I have focused on making the code 

simple, easily readable, and easily modifiable.  It is not optimized, 

and omits many desirable features. 

""" 

 

#### Libraries 

# Standard library 

import random 

 

# Third-party libraries 

import numpy as np 

 

class Network(object): 

 

    def __init__(self, sizes): 

        """The list ``sizes`` contains the number of neurons in the 

        respective layers of the network.  For example, if the list 

        was [2, 3, 1] then it would be a three-layer network, with the 

        first layer containing 2 neurons, the second layer 3 neurons, 

        and the third layer 1 neuron.  The biases and weights for the 

        network are initialized randomly, using a Gaussian 

        distribution with mean 0, and variance 1.  Note that the first 

σ

https://github.com/mnielsen/neural-networks-and-deep-learning/blob/master/src/network.py
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        layer is assumed to be an input layer, and by convention we 

        won't set any biases for those neurons, since biases are only 

        ever used in computing the outputs from later layers.""" 

        self.num_layers = len(sizes) 

        self.sizes = sizes 

        self.biases = [np.random.randn(y, 1) for y in sizes[1:]] 

        self.weights = [np.random.randn(y, x) 

                        for x, y in zip(sizes[:-1], sizes[1:])] 

 

    def feedforward(self, a): 

        """Return the output of the network if ``a`` is input.""" 

        for b, w in zip(self.biases, self.weights): 

            a = sigmoid(np.dot(w, a)+b) 

        return a 

 

    def SGD(self, training_data, epochs, mini_batch_size, eta, 

            test_data=None): 

        """Train the neural network using mini-batch stochastic 

        gradient descent.  The ``training_data`` is a list of tuples 

        ``(x, y)`` representing the training inputs and the desired 

        outputs.  The other non-optional parameters are 

        self-explanatory.  If ``test_data`` is provided then the 

        network will be evaluated against the test data after each 

        epoch, and partial progress printed out.  This is useful for 

        tracking progress, but slows things down substantially.""" 

        if test_data: n_test = len(test_data) 

        n = len(training_data) 

        for j in xrange(epochs): 

            random.shuffle(training_data) 

            mini_batches = [ 

                training_data[k:k+mini_batch_size] 

                for k in xrange(0, n, mini_batch_size)] 

            for mini_batch in mini_batches: 

                self.update_mini_batch(mini_batch, eta) 

            if test_data: 

                print "Epoch {0}: {1} / {2}".format( 

                    j, self.evaluate(test_data), n_test) 

            else: 

                print "Epoch {0} complete".format(j) 

 

    def update_mini_batch(self, mini_batch, eta): 

        """Update the network's weights and biases by applying 

        gradient descent using backpropagation to a single mini batch. 

        The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta`` 

        is the learning rate.""" 

        nabla_b = [np.zeros(b.shape) for b in self.biases] 

        nabla_w = [np.zeros(w.shape) for w in self.weights] 

        for x, y in mini_batch: 

            delta_nabla_b, delta_nabla_w = self.backprop(x, y) 

            nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)] 

            nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)] 

        self.weights = [w-(eta/len(mini_batch))*nw 

                        for w, nw in zip(self.weights, nabla_w)] 

        self.biases = [b-(eta/len(mini_batch))*nb 

                       for b, nb in zip(self.biases, nabla_b)] 

 

    def backprop(self, x, y): 

        """Return a tuple ``(nabla_b, nabla_w)`` representing the 

        gradient for the cost function C_x.  ``nabla_b`` and 

        ``nabla_w`` are layer-by-layer lists of numpy arrays, similar 

        to ``self.biases`` and ``self.weights``.""" 

        nabla_b = [np.zeros(b.shape) for b in self.biases] 

        nabla_w = [np.zeros(w.shape) for w in self.weights] 

        # feedforward 

        activation = x 

        activations = [x] # list to store all the activations, layer by layer 

        zs = [] # list to store all the z vectors, layer by layer 

        for b, w in zip(self.biases, self.weights): 
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            z = np.dot(w, activation)+b 

            zs.append(z) 

            activation = sigmoid(z) 

            activations.append(activation) 

        # backward pass 

        delta = self.cost_derivative(activations[-1], y) * \ 

            sigmoid_prime(zs[-1]) 

        nabla_b[-1] = delta 

        nabla_w[-1] = np.dot(delta, activations[-2].transpose()) 

        # Note that the variable l in the loop below is used a little 

        # differently to the notation in Chapter 2 of the book.  Here, 

        # l = 1 means the last layer of neurons, l = 2 is the 

        # second-last layer, and so on.  It's a renumbering of the 

        # scheme in the book, used here to take advantage of the fact 

        # that Python can use negative indices in lists. 

        for l in xrange(2, self.num_layers): 

            z = zs[-l] 

            sp = sigmoid_prime(z) 

            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp 

            nabla_b[-l] = delta 

            nabla_w[-l] = np.dot(delta, activations[-l-1].transpose()) 

        return (nabla_b, nabla_w) 

 

    def evaluate(self, test_data): 

        """Return the number of test inputs for which the neural 

        network outputs the correct result. Note that the neural 

        network's output is assumed to be the index of whichever 

        neuron in the final layer has the highest activation.""" 

        test_results = [(np.argmax(self.feedforward(x)), y) 

                        for (x, y) in test_data] 

        return sum(int(x == y) for (x, y) in test_results) 

 

    def cost_derivative(self, output_activations, y): 

        """Return the vector of partial derivatives \partial C_x / 

        \partial a for the output activations.""" 

        return (output_activations-y) 

 

#### Miscellaneous functions 

def sigmoid(z): 

    """The sigmoid function.""" 

    return 1.0/(1.0+np.exp(-z)) 

 

def sigmoid_prime(z): 

    """Derivative of the sigmoid function.""" 

    return sigmoid(z)*(1-sigmoid(z)) 

How well does the program recognize handwritten digits? Well, let's

start by loading in the MNIST data. I'll do this using a little helper

program, mnist_loader.py, to be described below. We execute the

following commands in a Python shell,

>>> import mnist_loader 

>>> training_data, validation_data, test_data = \ 

... mnist_loader.load_data_wrapper() 

Of course, this could also be done in a separate Python program,

but if you're following along it's probably easiest to do in a Python

shell.

After loading the MNIST data, we'll set up a Network with  hidden

neurons. We do this after importing the Python program listed

30
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above, which is named network,

>>> import network 

>>> net = network.Network([784, 30, 10]) 

Finally, we'll use stochastic gradient descent to learn from the

MNIST training_data over 30 epochs, with a mini-batch size of 10,

and a learning rate of ,

>>> net.SGD(training_data, 30, 10, 3.0, test_data=test_data) 

Note that if you're running the code as you read along, it will take

some time to execute - for a typical machine (as of 2015) it will

likely take a few minutes to run. I suggest you set things running,

continue to read, and periodically check the output from the code. If

you're in a rush you can speed things up by decreasing the number

of epochs, by decreasing the number of hidden neurons, or by using

only part of the training data. Note that production code would be

much, much faster: these Python scripts are intended to help you

understand how neural nets work, not to be high-performance

code! And, of course, once we've trained a network it can be run

very quickly indeed, on almost any computing platform. For

example, once we've learned a good set of weights and biases for a

network, it can easily be ported to run in Javascript in a web

browser, or as a native app on a mobile device. In any case, here is a

partial transcript of the output of one training run of the neural

network. The transcript shows the number of test images correctly

recognized by the neural network after each epoch of training. As

you can see, after just a single epoch this has reached 9,129 out of

10,000, and the number continues to grow,

Epoch 0: 9129 / 10000 

Epoch 1: 9295 / 10000 

Epoch 2: 9348 / 10000 

... 

Epoch 27: 9528 / 10000 

Epoch 28: 9542 / 10000 

Epoch 29: 9534 / 10000 

That is, the trained network gives us a classification rate of about 

percent -  percent at its peak ("Epoch 28")! That's quite

encouraging as a first attempt. I should warn you, however, that if

you run the code then your results are not necessarily going to be

quite the same as mine, since we'll be initializing our network using

(different) random weights and biases. To generate results in this

chapter I've taken best-of-three runs.

η = 3.0

95

95.42
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Let's rerun the above experiment, changing the number of hidden

neurons to . As was the case earlier, if you're running the code as

you read along, you should be warned that it takes quite a while to

execute (on my machine this experiment takes tens of seconds for

each training epoch), so it's wise to continue reading in parallel

while the code executes.

>>> net = network.Network([784, 100, 10]) 

>>> net.SGD(training_data, 30, 10, 3.0, test_data=test_data) 

Sure enough, this improves the results to  percent. At least in

this case, using more hidden neurons helps us get better results*.

Of course, to obtain these accuracies I had to make specific choices

for the number of epochs of training, the mini-batch size, and the

learning rate, . As I mentioned above, these are known as hyper-

parameters for our neural network, in order to distinguish them

from the parameters (weights and biases) learnt by our learning

algorithm. If we choose our hyper-parameters poorly, we can get

bad results. Suppose, for example, that we'd chosen the learning

rate to be ,

>>> net = network.Network([784, 100, 10]) 

>>> net.SGD(training_data, 30, 10, 0.001, test_data=test_data) 

The results are much less encouraging,

Epoch 0: 1139 / 10000 

Epoch 1: 1136 / 10000 

Epoch 2: 1135 / 10000 

... 

Epoch 27: 2101 / 10000 

Epoch 28: 2123 / 10000 

Epoch 29: 2142 / 10000 

However, you can see that the performance of the network is getting

slowly better over time. That suggests increasing the learning rate,

say to . If we do that, we get better results, which suggests

increasing the learning rate again. (If making a change improves

things, try doing more!) If we do that several times over, we'll end

up with a learning rate of something like  (and perhaps fine

tune to ), which is close to our earlier experiments. So even

though we initially made a poor choice of hyper-parameters, we at

least got enough information to help us improve our choice of

hyper-parameters.

In general, debugging a neural network can be challenging. This is

especially true when the initial choice of hyper-parameters

100

96.59
*Reader feedback indicates quite some variation

in results for this experiment, and some training

runs give results quite a bit worse. Using the

techniques introduced in chapter 3 will greatly

reduce the variation in performance across

different training runs for our networks.

η

η = 0.001

η = 0.01

η = 1.0

3.0
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produces results no better than random noise. Suppose we try the

successful 30 hidden neuron network architecture from earlier, but

with the learning rate changed to :

>>> net = network.Network([784, 30, 10]) 

>>> net.SGD(training_data, 30, 10, 100.0, test_data=test_data) 

At this point we've actually gone too far, and the learning rate is too

high:

Epoch 0: 1009 / 10000 

Epoch 1: 1009 / 10000 

Epoch 2: 1009 / 10000 

Epoch 3: 1009 / 10000 

... 

Epoch 27: 982 / 10000 

Epoch 28: 982 / 10000 

Epoch 29: 982 / 10000 

Now imagine that we were coming to this problem for the first time.

Of course, we know from our earlier experiments that the right

thing to do is to decrease the learning rate. But if we were coming to

this problem for the first time then there wouldn't be much in the

output to guide us on what to do. We might worry not only about

the learning rate, but about every other aspect of our neural

network. We might wonder if we've initialized the weights and

biases in a way that makes it hard for the network to learn? Or

maybe we don't have enough training data to get meaningful

learning? Perhaps we haven't run for enough epochs? Or maybe it's

impossible for a neural network with this architecture to learn to

recognize handwritten digits? Maybe the learning rate is too low?

Or, maybe, the learning rate is too high? When you're coming to a

problem for the first time, you're not always sure.

The lesson to take away from this is that debugging a neural

network is not trivial, and, just as for ordinary programming, there

is an art to it. You need to learn that art of debugging in order to get

good results from neural networks. More generally, we need to

develop heuristics for choosing good hyper-parameters and a good

architecture. We'll discuss all these at length through the book,

including how I chose the hyper-parameters above.

Exercise

Try creating a network with just two layers - an input and an

output layer, no hidden layer - with 784 and 10 neurons,

η = 100.0
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respectively. Train the network using stochastic gradient

descent. What classification accuracy can you achieve?

Earlier, I skipped over the details of how the MNIST data is loaded.

It's pretty straightforward. For completeness, here's the code. The

data structures used to store the MNIST data are described in the

documentation strings - it's straightforward stuff, tuples and lists of

Numpy ndarray objects (think of them as vectors if you're not

familiar with ndarrays):

""" 

mnist_loader 

~~~~~~~~~~~~ 

 

A library to load the MNIST image data.  For details of the data 

structures that are returned, see the doc strings for ``load_data`` 

and ``load_data_wrapper``.  In practice, ``load_data_wrapper`` is the 

function usually called by our neural network code. 

""" 

 

#### Libraries 

# Standard library 

import cPickle 

import gzip 

 

# Third-party libraries 

import numpy as np 

 

def load_data(): 

    """Return the MNIST data as a tuple containing the training data, 

    the validation data, and the test data. 

 

    The ``training_data`` is returned as a tuple with two entries. 

    The first entry contains the actual training images.  This is a 

    numpy ndarray with 50,000 entries.  Each entry is, in turn, a 

    numpy ndarray with 784 values, representing the 28 * 28 = 784 

    pixels in a single MNIST image. 

 

    The second entry in the ``training_data`` tuple is a numpy ndarray 

    containing 50,000 entries.  Those entries are just the digit 

    values (0...9) for the corresponding images contained in the first 

    entry of the tuple. 

 

    The ``validation_data`` and ``test_data`` are similar, except 

    each contains only 10,000 images. 

 

    This is a nice data format, but for use in neural networks it's 

    helpful to modify the format of the ``training_data`` a little. 

    That's done in the wrapper function ``load_data_wrapper()``, see 

    below. 

    """ 

    f = gzip.open('../data/mnist.pkl.gz', 'rb') 

    training_data, validation_data, test_data = cPickle.load(f) 

    f.close() 

    return (training_data, validation_data, test_data) 

 

def load_data_wrapper(): 

    """Return a tuple containing ``(training_data, validation_data, 

    test_data)``. Based on ``load_data``, but the format is more 

    convenient for use in our implementation of neural networks. 

 

    In particular, ``training_data`` is a list containing 50,000 
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    2-tuples ``(x, y)``.  ``x`` is a 784-dimensional numpy.ndarray 

    containing the input image.  ``y`` is a 10-dimensional 

    numpy.ndarray representing the unit vector corresponding to the 

    correct digit for ``x``. 

 

    ``validation_data`` and ``test_data`` are lists containing 10,000 

    2-tuples ``(x, y)``.  In each case, ``x`` is a 784-dimensional 

    numpy.ndarry containing the input image, and ``y`` is the 

    corresponding classification, i.e., the digit values (integers) 

    corresponding to ``x``. 

 

    Obviously, this means we're using slightly different formats for 

    the training data and the validation / test data.  These formats 

    turn out to be the most convenient for use in our neural network 

    code.""" 

    tr_d, va_d, te_d = load_data() 

    training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]] 

    training_results = [vectorized_result(y) for y in tr_d[1]] 

    training_data = zip(training_inputs, training_results) 

    validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]] 

    validation_data = zip(validation_inputs, va_d[1]) 

    test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]] 

    test_data = zip(test_inputs, te_d[1]) 

    return (training_data, validation_data, test_data) 

 

def vectorized_result(j): 

    """Return a 10-dimensional unit vector with a 1.0 in the jth 

    position and zeroes elsewhere.  This is used to convert a digit 

    (0...9) into a corresponding desired output from the neural 

    network.""" 

    e = np.zeros((10, 1)) 

    e[j] = 1.0 

    return e 

I said above that our program gets pretty good results. What does

that mean? Good compared to what? It's informative to have some

simple (non-neural-network) baseline tests to compare against, to

understand what it means to perform well. The simplest baseline of

all, of course, is to randomly guess the digit. That'll be right about

ten percent of the time. We're doing much better than that!

What about a less trivial baseline? Let's try an extremely simple

idea: we'll look at how dark an image is. For instance, an image of a 

 will typically be quite a bit darker than an image of a , just

because more pixels are blackened out, as the following examples

illustrate:

This suggests using the training data to compute average

darknesses for each digit, . When presented with a new

image, we compute how dark the image is, and then guess that it's

2 1

0, 1, 2, … , 9
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whichever digit has the closest average darkness. This is a simple

procedure, and is easy to code up, so I won't explicitly write out the

code - if you're interested it's in the GitHub repository. But it's a big

improvement over random guessing, getting  of the 

test images correct, i.e.,  percent accuracy.

It's not difficult to find other ideas which achieve accuracies in the 

 to  percent range. If you work a bit harder you can get up over 

 percent. But to get much higher accuracies it helps to use

established machine learning algorithms. Let's try using one of the

best known algorithms, the support vector machine or SVM. If

you're not familiar with SVMs, not to worry, we're not going to need

to understand the details of how SVMs work. Instead, we'll use a

Python library called scikit-learn, which provides a simple Python

interface to a fast C-based library for SVMs known as LIBSVM.

If we run scikit-learn's SVM classifier using the default settings,

then it gets 9,435 of 10,000 test images correct. (The code is

available here.) That's a big improvement over our naive approach

of classifying an image based on how dark it is. Indeed, it means

that the SVM is performing roughly as well as our neural networks,

just a little worse. In later chapters we'll introduce new techniques

that enable us to improve our neural networks so that they perform

much better than the SVM.

That's not the end of the story, however. The 9,435 of 10,000 result

is for scikit-learn's default settings for SVMs. SVMs have a number

of tunable parameters, and it's possible to search for parameters

which improve this out-of-the-box performance. I won't explicitly

do this search, but instead refer you to this blog post by Andreas

Mueller if you'd like to know more. Mueller shows that with some

work optimizing the SVM's parameters it's possible to get the

performance up above 98.5 percent accuracy. In other words, a

well-tuned SVM only makes an error on about one digit in 70.

That's pretty good! Can neural networks do better?

In fact, they can. At present, well-designed neural networks

outperform every other technique for solving MNIST, including

SVMs. The current (2013) record is classifying 9,979 of 10,000

images correctly. This was done by Li Wan, Matthew Zeiler, Sixin

Zhang, Yann LeCun, and Rob Fergus. We'll see most of the

2, 225 10, 000
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https://github.com/mnielsen/neural-networks-and-deep-learning/blob/master/src/mnist_average_darkness.py
http://scikit-learn.org/stable/
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techniques they used later in the book. At that level the

performance is close to human-equivalent, and is arguably better,

since quite a few of the MNIST images are difficult even for humans

to recognize with confidence, for example:

I trust you'll agree that those are tough to classify! With images like

these in the MNIST data set it's remarkable that neural networks

can accurately classify all but 21 of the 10,000 test images. Usually,

when programming we believe that solving a complicated problem

like recognizing the MNIST digits requires a sophisticated

algorithm. But even the neural networks in the Wan et al paper just

mentioned involve quite simple algorithms, variations on the

algorithm we've seen in this chapter. All the complexity is learned,

automatically, from the training data. In some sense, the moral of

both our results and those in more sophisticated papers, is that for

some problems:

sophisticated algorithm  simple learning algorithm + good

training data.

Toward deep learning
While our neural network gives impressive performance, that

performance is somewhat mysterious. The weights and biases in the

network were discovered automatically. And that means we don't

immediately have an explanation of how the network does what it

does. Can we find some way to understand the principles by which

our network is classifying handwritten digits? And, given such

principles, can we do better?

To put these questions more starkly, suppose that a few decades

hence neural networks lead to artificial intelligence (AI). Will we

understand how such intelligent networks work? Perhaps the

networks will be opaque to us, with weights and biases we don't

understand, because they've been learned automatically. In the

early days of AI research people hoped that the effort to build an AI

would also help us understand the principles behind intelligence

≤
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and, maybe, the functioning of the human brain. But perhaps the

outcome will be that we end up understanding neither the brain nor

how artificial intelligence works!

To address these questions, let's think back to the interpretation of

artificial neurons that I gave at the start of the chapter, as a means

of weighing evidence. Suppose we want to determine whether an

image shows a human face or not:

  

We could attack this problem the same way we attacked

handwriting recognition - by using the pixels in the image as input

to a neural network, with the output from the network a single

neuron indicating either "Yes, it's a face" or "No, it's not a face".

Let's suppose we do this, but that we're not using a learning

algorithm. Instead, we're going to try to design a network by hand,

choosing appropriate weights and biases. How might we go about

it? Forgetting neural networks entirely for the moment, a heuristic

we could use is to decompose the problem into sub-problems: does

the image have an eye in the top left? Does it have an eye in the top

right? Does it have a nose in the middle? Does it have a mouth in

the bottom middle? Is there hair on top? And so on.

If the answers to several of these questions are "yes", or even just

"probably yes", then we'd conclude that the image is likely to be a

face. Conversely, if the answers to most of the questions are "no",

then the image probably isn't a face.

Of course, this is just a rough heuristic, and it suffers from many

deficiencies. Maybe the person is bald, so they have no hair. Maybe

we can only see part of the face, or the face is at an angle, so some of

the facial features are obscured. Still, the heuristic suggests that if

we can solve the sub-problems using neural networks, then perhaps

we can build a neural network for face-detection, by combining the

networks for the sub-problems. Here's a possible architecture, with

Credits: 1. Ester Inbar. 2. Unknown. 3. NASA,

ESA, G. Illingworth, D. Magee, and P. Oesch

(University of California, Santa Cruz), R.

Bouwens (Leiden University), and the HUDF09

Team. Click on the images for more details.

http://commons.wikimedia.org/wiki/File:Kangaroo_ST_03.JPG
http://commons.wikimedia.org/wiki/File:Albert_Einstein_at_the_age_of_three_(1882).jpg
http://commons.wikimedia.org/wiki/File:The_Hubble_eXtreme_Deep_Field.jpg
http://commons.wikimedia.org/wiki/User:ST
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rectangles denoting the sub-networks. Note that this isn't intended

as a realistic approach to solving the face-detection problem; rather,

it's to help us build intuition about how networks function. Here's

the architecture:

It's also plausible that the sub-networks can be decomposed.

Suppose we're considering the question: "Is there an eye in the top

left?" This can be decomposed into questions such as: "Is there an

eyebrow?"; "Are there eyelashes?"; "Is there an iris?"; and so on. Of

course, these questions should really include positional

information, as well - "Is the eyebrow in the top left, and above the

iris?", that kind of thing - but let's keep it simple. The network to

answer the question "Is there an eye in the top left?" can now be

decomposed:

Those questions too can be broken down, further and further

through multiple layers. Ultimately, we'll be working with sub-

networks that answer questions so simple they can easily be

answered at the level of single pixels. Those questions might, for

example, be about the presence or absence of very simple shapes at
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particular points in the image. Such questions can be answered by

single neurons connected to the raw pixels in the image.

The end result is a network which breaks down a very complicated

question - does this image show a face or not - into very simple

questions answerable at the level of single pixels. It does this

through a series of many layers, with early layers answering very

simple and specific questions about the input image, and later

layers building up a hierarchy of ever more complex and abstract

concepts. Networks with this kind of many-layer structure - two or

more hidden layers - are called deep neural networks.

Of course, I haven't said how to do this recursive decomposition

into sub-networks. It certainly isn't practical to hand-design the

weights and biases in the network. Instead, we'd like to use learning

algorithms so that the network can automatically learn the weights

and biases - and thus, the hierarchy of concepts - from training

data. Researchers in the 1980s and 1990s tried using stochastic

gradient descent and backpropagation to train deep networks.

Unfortunately, except for a few special architectures, they didn't

have much luck. The networks would learn, but very slowly, and in

practice often too slowly to be useful.

Since 2006, a set of techniques has been developed that enable

learning in deep neural nets. These deep learning techniques are

based on stochastic gradient descent and backpropagation, but also

introduce new ideas. These techniques have enabled much deeper

(and larger) networks to be trained - people now routinely train

networks with 5 to 10 hidden layers. And, it turns out that these

perform far better on many problems than shallow neural networks,

i.e., networks with just a single hidden layer. The reason, of course,

is the ability of deep nets to build up a complex hierarchy of

concepts. It's a bit like the way conventional programming

languages use modular design and ideas about abstraction to enable

the creation of complex computer programs. Comparing a deep

network to a shallow network is a bit like comparing a

programming language with the ability to make function calls to a

stripped down language with no ability to make such calls.

Abstraction takes a different form in neural networks than it does in

conventional programming, but it's just as important.

In academic work, please cite this book as: Michael A. Nielsen, "Neural Networks and Deep Learning", Last update: Sat Dec 2 09:09:08 2017  
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